File tree Expand file tree Collapse file tree 10 files changed +55
-35
lines changed
src/content/questions/comp2804 Expand file tree Collapse file tree 10 files changed +55
-35
lines changed Original file line number Diff line number Diff line change 11${(5x-36)}^{100}$
22
3- $= \sum^{100}_ {k=0} \binom{100}{k}{(5x)}^k {(-3y)}^{n-k} $
3+ $ = \sum^{100}_ {k=0} \binom{100}{k} {(5x)}^{n-k} {(-3y)}^{k} $
44
5- $=\binom{100}{20}{(5x)}^{20} {(-3y)} ^{80}$
5+ We only consider $k=80$, as it results in $y ^{80}$.
66
7- $= \binom{100}{20}5^{20} 3^{ 80} x^{20} y ^{80}$
7+ $ = \binom{100}{80} \cdot {(5x)}^{100- 80} \cdot {(-3y)} ^{80} $
88
9- $= \binom{100}{80}5^{20} 3 ^{80} x^{20} y^{80}$
9+ $ = \binom{100}{80} \cdot 5^{20} \cdot {(-3)} ^{80} \cdot x^{20} \cdot y^{80} $
1010
11- $= \binom{100}{80}5^{20} 3^{80}$ (this is the coefficient)
11+ $ = \binom{100}{80} \cdot 5^{20} \cdot 3^{80} $ (final answer, i.e. the coefficient of $x^{20} y^{80}$ )
Original file line number Diff line number Diff line change 1- $ = \sum^{20}\ _ {k=0} \binom{20}{k} {(-3x)}^{k} {(5y)}^{20- k} $
1+ $ = \sum^{20}_ {k=0} \binom{20}{k} {(-3x)}^{n- k} {(5y)}^{k} $
22
3- $ = \binom{20}{15} {(-3)}^{15} {5}^{5} x^{15} y^5 $
3+ We only consider $k=5$, as it results in $y^{5}$.
44
5- $ = - \binom{20}{15} {(3 )}^{15} {5 }^{5} x^{15} y^5 $
5+ $ = \binom{20}{5} \cdot {(-3x )}^{20-5} \cdot {(5y) }^{5} $
66
7- Thus, the coefficient of $x^{15}y^{5}$ in the expansion of ${(-3x + 5y)}^{20}$ is $ - \binom{20}{15} {(3)}^{15} {5}^{5} $
7+ $ = \binom{20}{5} \cdot {(-3)}^{15} \cdot {5}^{5} \cdot x^{15} \cdot y^5 $
8+
9+ $ = - \binom{20}{5} \cdot {3}^{15} \cdot {5}^{5} \cdot x^{15} \cdot y^5 $
10+
11+ Thus, the coefficient of $x^{15}y^{5}$ in the expansion of ${(-3x + 5y)}^{20}$ is $ - \binom{20}{5} \cdot {3}^{15} \cdot {5}^{5} $
Original file line number Diff line number Diff line change @@ -8,5 +8,5 @@ solution: comp2804/2015-fall-midterm/7/solution.md
88tags :
99 - comp2804
1010 - comp2804-midterm
11- - comp2804-newton's-binomial-theorem
11+ - comp2804-the-pigeonhole-principle
1212---
Original file line number Diff line number Diff line change @@ -8,5 +8,5 @@ solution: comp2804/2015-fall-midterm/8/solution.md
88tags :
99 - comp2804
1010 - comp2804-midterm
11- - comp2804-counting-solutions-of-linear-equations
11+ - comp2804-newton's-binomial-theorem
1212---
Original file line number Diff line number Diff line change 1- $=\sum^{88}_ {k=0} \binom{88}{k}{(3x)}^k {(-17y)}^{88- k}$
1+ $=\sum^{88}_ {k=0} \binom{88}{k}{(3x)}^{88-k} {(-17y)}^{k}$
22
33$=\binom{88}{7}{(3x)}^{81} {(-17y)}^{7}$
44
Original file line number Diff line number Diff line change 11$ {(2x-7y)}^{15} $
22
3- $= \sum \_ {k=4 }^{15} \binom{15}{k} {(2x)}^{k} {(-7y)}^{15- k} $
3+ $ = \sum _ {k=0 }^{15} \binom{15}{k} {(2x)}^{n- k} {(-7y)}^{k} $
44
5- $ = \binom{15}{4} 2^{4} {(-7)}^{11} x^4 y^{11}$
5+ We only consider $k=11$, as it results in $ y^{11}$.
66
7- $ = - \binom{15}{4} 2^{4} {(7)}^{11} $
7+ $ = \binom{15}{11} \cdot {(2x)}^{15-11} \cdot {(-7y)}^{11} $
8+
9+ $ = \binom{15}{11} \cdot 2^{4} \cdot {(-7)}^{11} \cdot x^4 \cdot y^{11} $
10+
11+ $ = - \binom{15}{4} \cdot 2^{4} \cdot 7^{11} \cdot x^4 \cdot y^{11} $
12+
13+ Thus, the coefficient of $ x^{4}y^{11} $ in the expansion of $ {(2x-7y)}^{15} $ is $ - \binom{15}{11} \cdot {2}^{4} \cdot {7}^{11} $
Original file line number Diff line number Diff line change 1- $ = \sum^{50}\ _ {k=0} \binom{50}{k} {(5x)}^{50 -k} {(-7y)}^k $
1+ $ = \sum^{50}_ {k=0} \binom{50}{k} {(5x)}^{n -k} {(-7y)}^k $
22
3- $ = \sum^{50} \_ {k=0} \binom{50}{26} {(5x)}^{50- 26} {(-7y)}^k $
3+ We only consider $k=26$, as it results in $y^{ 26}$.
44
5- $ = \binom{50}{24} {(5 )}^{24} x^{24} {(-7)}^{26} y ^{26} $
5+ $ = \binom{50}{26} \cdot {(5x )}^{50-26} \cdot {(-7y)} ^{26} $
66
7- $ = \binom{50}{26} {(5)}^{24} {(-7)}^{26} x^{24} y^{26} $
7+ $ = \binom{50}{26} \cdot {(5)}^{24} \cdot x^{24} \cdot {(-7)}^{26} \cdot y^{26} $
8+
9+ $ = \binom{50}{26} \cdot 5^{24} \cdot 7^{26} \cdot x^{24} \cdot y^{26} $
10+
11+ Thus, the coefficient is $ \binom{50}{26} \cdot 5^{24} \cdot 7^{26} $
Original file line number Diff line number Diff line change 1- $ = \sum^{100}\ _ {k=0} \binom{100}{k} {(7x)}^{k} {(-13y)}^{100- k} $
1+ $ = \sum^{100}_ {k=0} \binom{100}{k} {(7x)}^{n- k} {(-13y)}^{k} $
22
3- $ = \sum^{100} \_ {k=0} \binom{100}{20} {(7x)}^{20} {(-13y)}^{100-20} $
3+ We only consider $k=80$, as it results in $y^{80}$.
44
5- $ = \binom{100}{20} {(7 )}^{20} x^{20} {(-13)}^{80} y ^{80} $
5+ $ = \binom{100}{80} \cdot {(7x )}^{100-80} \cdot {(-13y)} ^{80} $
66
7- $ = \binom{100}{20} {(7)}^{20} { (-13)}^{80} x^{20} y^{80} $
7+ $ = \binom{100}{80} \cdot {(7)}^{20} \cdot x^{20} \cdot { (-13)}^{80} \cdot y^{80} $
88
9- $ = \binom{100}{20} {(7)} ^{20} {(13)} ^{80} x^{20} y^{80} $
9+ $ = \binom{100}{80} \cdot 7 ^{20} \cdot 13 ^{80} \cdot x^{20} \cdot y^{80} $
1010
11- Thus, the coefficient is $ \binom{100}{20} {(7)} ^{20} {(13)} ^{80} $
11+ Thus, the coefficient is $ \binom{100}{80} \cdot 7 ^{20} \cdot 13 ^{80} $
Original file line number Diff line number Diff line change 1- $ = \sum \_ {k = 35 }^{55} \binom{55}{k} {(5x)}^{k} {(-3y)}^{n- k} $
1+ $ = \sum _ {k=0 }^{55} \binom{55}{k} {(5x)}^{n- k} {(-3y)}^{k} $
22
3- $ = \binom{55}{20} {(5x)}^{20} {(-3y)} ^{35} $
3+ We only consider $k=35$, as it results in $y ^{35}$.
44
5- $ = - \binom{55}{20} 5^{20} 3^{ 35} x^{20} y ^{35}$
5+ $ = \binom{55}{35} \cdot {(5x)}^{55- 35} \cdot {(-3y)} ^{35} $
66
7- The coefficient is $ - \binom{55}{20} 5^{20} 3^{35} $
7+ $ = \binom{55}{35} \cdot 5^{20} \cdot {(-3)}^{35} \cdot x^{20} \cdot y^{35}$
8+
9+ $ = - \binom{55}{35} \cdot 5^{20} \cdot 3^{35} \cdot x^{20} \cdot y^{35}$
10+
11+ The coefficient is $ - \binom{55}{35} \cdot 5^{20} \cdot 3^{35} $
Original file line number Diff line number Diff line change 11$ (2x - 3y)^{30} $
22
3- $ = \sum \_ {k=10 }^{30} \binom{30}{k} \cdot (2x)^{k} \cdot (-3y)^{30- k} $
3+ $ = \sum _ {k=0 }^{30} \binom{30}{k} \cdot (2x)^{n- k} \cdot (-3y)^{k} $
44
5- $ = \binom{30}{10} \cdot (2x)^{10} \cdot (-3y)^{30-10} $
5+ We only consider $k=20$, as it results in $y^{20}$.
66
7- $ = \binom{30}{10 } \cdot (2x)^{10 } \cdot (-3y)^{20} $
7+ $ = \binom{30}{20 } \cdot (2x)^{30-20 } \cdot (-3y)^{20} $
88
9- $ = \binom{30}{10 } \cdot 2 ^{10} \cdot (-3)^{20} \cdot x^{10} \cdot y ^{20} $
9+ $ = \binom{30}{20 } \cdot (2x) ^{10} \cdot (-3y) ^{20} $
1010
11- $ = \binom{30}{10 } \cdot 2^{10} \cdot (3)^{20} \cdot x^{10} \cdot y^{20} $
11+ $ = \binom{30}{20 } \cdot 2^{10} \cdot (- 3)^{20} \cdot x^{10} \cdot y^{20} $
1212
13- From this equation, we can see that the coefficient (aka the real numbers) are: $\binom{30}{10} \cdot 2^{10} \cdot (3)^{20}$
13+ $ = \binom{30}{20} \cdot 2^{10} \cdot (3)^{20} \cdot x^{10} \cdot y^{20} $
14+
15+ From this equation, we can see that the coefficient (aka the real numbers) are: $\binom{30}{20} \cdot 2^{10} \cdot 3^{20}$
You can’t perform that action at this time.
0 commit comments