Skip to content

Commit d4a74d4

Browse files
authored
binomial theorem solution fixes + tag fixes (#38)
* added f2024 fall exam category, fixed w2022 final q6 solution * improved NBT solutions, fixed an incorrect tag * fixed an additional tag * fixed minor logical error * branch is now accurate
1 parent 851d8a8 commit d4a74d4

File tree

10 files changed

+55
-35
lines changed

10 files changed

+55
-35
lines changed
Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1,11 +1,11 @@
11
${(5x-36)}^{100}$
22

3-
$=\sum^{100}_{k=0} \binom{100}{k}{(5x)}^k {(-3y)}^{n-k}$
3+
$ = \sum^{100}_{k=0} \binom{100}{k} {(5x)}^{n-k} {(-3y)}^{k} $
44

5-
$=\binom{100}{20}{(5x)}^{20} {(-3y)}^{80}$
5+
We only consider $k=80$, as it results in $y^{80}$.
66

7-
$=\binom{100}{20}5^{20} 3^{80} x^{20} y^{80}$
7+
$ = \binom{100}{80} \cdot {(5x)}^{100-80} \cdot {(-3y)}^{80} $
88

9-
$=\binom{100}{80}5^{20} 3^{80} x^{20} y^{80}$
9+
$ = \binom{100}{80} \cdot 5^{20} \cdot {(-3)}^{80} \cdot x^{20} \cdot y^{80} $
1010

11-
$=\binom{100}{80}5^{20} 3^{80}$ (this is the coefficient)
11+
$ = \binom{100}{80} \cdot 5^{20} \cdot 3^{80} $ (final answer, i.e. the coefficient of $x^{20} y^{80}$)
Lines changed: 8 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,11 @@
1-
$ = \sum^{20}\_{k=0} \binom{20}{k} {(-3x)}^{k} {(5y)}^{20-k} $
1+
$ = \sum^{20}_{k=0} \binom{20}{k} {(-3x)}^{n-k} {(5y)}^{k} $
22

3-
$ = \binom{20}{15} {(-3)}^{15} {5}^{5} x^{15} y^5 $
3+
We only consider $k=5$, as it results in $y^{5}$.
44

5-
$ = - \binom{20}{15} {(3)}^{15} {5}^{5} x^{15} y^5 $
5+
$ = \binom{20}{5} \cdot {(-3x)}^{20-5} \cdot {(5y)}^{5} $
66

7-
Thus, the coefficient of $x^{15}y^{5}$ in the expansion of ${(-3x + 5y)}^{20}$ is $ - \binom{20}{15} {(3)}^{15} {5}^{5} $
7+
$ = \binom{20}{5} \cdot {(-3)}^{15} \cdot {5}^{5} \cdot x^{15} \cdot y^5 $
8+
9+
$ = - \binom{20}{5} \cdot {3}^{15} \cdot {5}^{5} \cdot x^{15} \cdot y^5 $
10+
11+
Thus, the coefficient of $x^{15}y^{5}$ in the expansion of ${(-3x + 5y)}^{20}$ is $ - \binom{20}{5} \cdot {3}^{15} \cdot {5}^{5} $

src/content/questions/comp2804/2015-fall-midterm/7/index.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,5 +8,5 @@ solution: comp2804/2015-fall-midterm/7/solution.md
88
tags:
99
- comp2804
1010
- comp2804-midterm
11-
- comp2804-newton's-binomial-theorem
11+
- comp2804-the-pigeonhole-principle
1212
---

src/content/questions/comp2804/2015-fall-midterm/8/index.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,5 +8,5 @@ solution: comp2804/2015-fall-midterm/8/solution.md
88
tags:
99
- comp2804
1010
- comp2804-midterm
11-
- comp2804-counting-solutions-of-linear-equations
11+
- comp2804-newton's-binomial-theorem
1212
---

src/content/questions/comp2804/2015-fall-midterm/8/solution.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
$=\sum^{88}_{k=0} \binom{88}{k}{(3x)}^k {(-17y)}^{88-k}$
1+
$=\sum^{88}_{k=0} \binom{88}{k}{(3x)}^{88-k} {(-17y)}^{k}$
22

33
$=\binom{88}{7}{(3x)}^{81} {(-17y)}^{7}$
44

Lines changed: 9 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,13 @@
11
$ {(2x-7y)}^{15} $
22

3-
$= \sum\_{k=4}^{15} \binom{15}{k} {(2x)}^{k} {(-7y)}^{15-k} $
3+
$ = \sum_{k=0}^{15} \binom{15}{k} {(2x)}^{n-k} {(-7y)}^{k} $
44

5-
$ = \binom{15}{4} 2^{4} {(-7)}^{11} x^4 y^{11}$
5+
We only consider $k=11$, as it results in $y^{11}$.
66

7-
$ = - \binom{15}{4} 2^{4} {(7)}^{11} $
7+
$ = \binom{15}{11} \cdot {(2x)}^{15-11} \cdot {(-7y)}^{11} $
8+
9+
$ = \binom{15}{11} \cdot 2^{4} \cdot {(-7)}^{11} \cdot x^4 \cdot y^{11} $
10+
11+
$ = - \binom{15}{4} \cdot 2^{4} \cdot 7^{11} \cdot x^4 \cdot y^{11} $
12+
13+
Thus, the coefficient of $ x^{4}y^{11} $ in the expansion of $ {(2x-7y)}^{15} $ is $ - \binom{15}{11} \cdot {2}^{4} \cdot {7}^{11} $
Lines changed: 8 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,11 @@
1-
$ = \sum^{50}\_{k=0} \binom{50}{k} {(5x)}^{50-k} {(-7y)}^k $
1+
$ = \sum^{50}_{k=0} \binom{50}{k} {(5x)}^{n-k} {(-7y)}^k $
22

3-
$ = \sum^{50}\_{k=0} \binom{50}{26} {(5x)}^{50-26} {(-7y)}^k $
3+
We only consider $k=26$, as it results in $y^{26}$.
44

5-
$ = \binom{50}{24} {(5)}^{24} x^{24} {(-7)}^{26} y^{26} $
5+
$ = \binom{50}{26} \cdot {(5x)}^{50-26} \cdot {(-7y)}^{26} $
66

7-
$ = \binom{50}{26} {(5)}^{24} {(-7)}^{26} x^{24} y^{26} $
7+
$ = \binom{50}{26} \cdot {(5)}^{24} \cdot x^{24} \cdot {(-7)}^{26} \cdot y^{26} $
8+
9+
$ = \binom{50}{26} \cdot 5^{24} \cdot 7^{26} \cdot x^{24} \cdot y^{26} $
10+
11+
Thus, the coefficient is $ \binom{50}{26} \cdot 5^{24} \cdot 7^{26} $
Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1,11 +1,11 @@
1-
$ = \sum^{100}\_{k=0} \binom{100}{k} {(7x)}^{k} {(-13y)}^{100-k} $
1+
$ = \sum^{100}_{k=0} \binom{100}{k} {(7x)}^{n-k} {(-13y)}^{k} $
22

3-
$ = \sum^{100}\_{k=0} \binom{100}{20} {(7x)}^{20} {(-13y)}^{100-20} $
3+
We only consider $k=80$, as it results in $y^{80}$.
44

5-
$ = \binom{100}{20} {(7)}^{20} x^{20} {(-13)}^{80} y^{80} $
5+
$ = \binom{100}{80} \cdot {(7x)}^{100-80} \cdot {(-13y)}^{80} $
66

7-
$ = \binom{100}{20} {(7)}^{20} {(-13)}^{80} x^{20} y^{80} $
7+
$ = \binom{100}{80} \cdot {(7)}^{20} \cdot x^{20} \cdot {(-13)}^{80} \cdot y^{80} $
88

9-
$ = \binom{100}{20} {(7)}^{20} {(13)}^{80} x^{20} y^{80} $
9+
$ = \binom{100}{80} \cdot 7^{20} \cdot 13^{80} \cdot x^{20} \cdot y^{80} $
1010

11-
Thus, the coefficient is $ \binom{100}{20} {(7)}^{20} {(13)}^{80} $
11+
Thus, the coefficient is $ \binom{100}{80} \cdot 7^{20} \cdot 13^{80} $
Lines changed: 8 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,11 @@
1-
$ = \sum\_{k = 35}^{55} \binom{55}{k} {(5x)}^{k} {(-3y)}^{n-k} $
1+
$ = \sum_{k=0}^{55} \binom{55}{k} {(5x)}^{n-k} {(-3y)}^{k} $
22

3-
$ = \binom{55}{20} {(5x)}^{20} {(-3y)}^{35} $
3+
We only consider $k=35$, as it results in $y^{35}$.
44

5-
$ = - \binom{55}{20} 5^{20} 3^{35} x^{20} y^{35}$
5+
$ = \binom{55}{35} \cdot {(5x)}^{55-35} \cdot {(-3y)}^{35} $
66

7-
The coefficient is $ - \binom{55}{20} 5^{20} 3^{35} $
7+
$ = \binom{55}{35} \cdot 5^{20} \cdot {(-3)}^{35} \cdot x^{20} \cdot y^{35}$
8+
9+
$ = - \binom{55}{35} \cdot 5^{20} \cdot 3^{35} \cdot x^{20} \cdot y^{35}$
10+
11+
The coefficient is $ - \binom{55}{35} \cdot 5^{20} \cdot 3^{35} $
Lines changed: 8 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1,13 +1,15 @@
11
$ (2x - 3y)^{30} $
22

3-
$ = \sum\_{k=10}^{30} \binom{30}{k} \cdot (2x)^{k} \cdot (-3y)^{30-k} $
3+
$ = \sum_{k=0}^{30} \binom{30}{k} \cdot (2x)^{n-k} \cdot (-3y)^{k} $
44

5-
$ = \binom{30}{10} \cdot (2x)^{10} \cdot (-3y)^{30-10} $
5+
We only consider $k=20$, as it results in $y^{20}$.
66

7-
$ = \binom{30}{10} \cdot (2x)^{10} \cdot (-3y)^{20} $
7+
$ = \binom{30}{20} \cdot (2x)^{30-20} \cdot (-3y)^{20} $
88

9-
$ = \binom{30}{10} \cdot 2^{10} \cdot (-3)^{20} \cdot x^{10} \cdot y^{20} $
9+
$ = \binom{30}{20} \cdot (2x)^{10} \cdot (-3y)^{20} $
1010

11-
$ = \binom{30}{10} \cdot 2^{10} \cdot (3)^{20} \cdot x^{10} \cdot y^{20} $
11+
$ = \binom{30}{20} \cdot 2^{10} \cdot (-3)^{20} \cdot x^{10} \cdot y^{20} $
1212

13-
From this equation, we can see that the coefficient (aka the real numbers) are: $\binom{30}{10} \cdot 2^{10} \cdot (3)^{20}$
13+
$ = \binom{30}{20} \cdot 2^{10} \cdot (3)^{20} \cdot x^{10} \cdot y^{20} $
14+
15+
From this equation, we can see that the coefficient (aka the real numbers) are: $\binom{30}{20} \cdot 2^{10} \cdot 3^{20}$

0 commit comments

Comments
 (0)