|
| 1 | + |
| 2 | +import csv |
| 3 | +import pandas as pd |
| 4 | +import numpy as np |
| 5 | + |
| 6 | + |
| 7 | +######=================================================######## |
| 8 | +###### Segment A.1 ######## |
| 9 | +######=================================================######## |
| 10 | + |
| 11 | +SimDays = 365 |
| 12 | +SimHours = SimDays * 24 |
| 13 | +HorizonHours = 24 ##planning horizon (e.g., 24, 48, 72 hours etc.) |
| 14 | +TransLoss = 0.075 ##transmission loss as a percent of generation |
| 15 | +n1criterion = 0.75 ##maximum line-usage as a percent of line-capacity |
| 16 | +res_margin = 0.15 ##minimum reserve as a percent of system demand |
| 17 | +spin_margin = 0.50 ##minimum spinning reserve as a percent of total reserve |
| 18 | + |
| 19 | +data_name = 'pownet_data_camb_2016' |
| 20 | + |
| 21 | + |
| 22 | +######=================================================######## |
| 23 | +###### Segment A.2 ######## |
| 24 | +######=================================================######## |
| 25 | + |
| 26 | +#read parameters for dispatchable resources (coal/gas/oil/biomass generators, imports) |
| 27 | +df_gen = pd.read_csv('data_camb_genparams.csv',header=0) |
| 28 | + |
| 29 | +##hourly ts of dispatchable hydropower at each domestic dam |
| 30 | +df_hydro = pd.read_csv('data_camb_hydro_2016.csv',header=0) |
| 31 | + |
| 32 | +##hourly ts of dispatchable hydropower at each import dam |
| 33 | +df_hydro_import = pd.read_csv('data_camb_hydro_import_2016.csv',header=0) |
| 34 | + |
| 35 | +####hourly ts of dispatchable solar-power at each plant |
| 36 | +##df_solar = pd.read_csv('data_solar.csv',header=0) |
| 37 | +## |
| 38 | +####hourly ts of dispatchable wind-power at each plant |
| 39 | +##df_wind = pd.read_csv('data_wind.csv',header=0) |
| 40 | + |
| 41 | +##hourly ts of load at substation-level |
| 42 | +df_load = pd.read_csv('data_camb_load_2016.csv',header=0) |
| 43 | + |
| 44 | +#capacity and susceptence of each transmission line (one direction) |
| 45 | +df_trans1 = pd.read_csv('data_camb_transparam.csv',header=0) |
| 46 | + |
| 47 | +#hourly minimum reserve as a function of load (e.g., 15% of current load) |
| 48 | +df_reserves = pd.DataFrame((df_load.iloc[:,4:].sum(axis=1)*res_margin).values,columns=['Reserve']) |
| 49 | + |
| 50 | +#capacity and susceptence of each transmission line (both directions) |
| 51 | +df_trans2 = pd.DataFrame([df_trans1['sink'],df_trans1['source'],df_trans1['linemva'],df_trans1['linesus']]).transpose() |
| 52 | +df_trans2.columns = ['source','sink','linemva','linesus'] |
| 53 | +df_paths = pd.concat([df_trans1,df_trans2], axis=0) |
| 54 | +df_paths.index = np.arange(len(df_paths)) |
| 55 | + |
| 56 | + |
| 57 | +######=================================================######## |
| 58 | +###### Segment A.3 ######## |
| 59 | +######=================================================######## |
| 60 | + |
| 61 | +####======== Lists of Nodes of the Power System ========######## |
| 62 | +h_nodes = ['TTYh','LRCh','ATYh','KIR1h','KIR3h','KMCh'] |
| 63 | +h_imports = ['Salabam'] |
| 64 | +##s_nodes = ['solar1','solar2'] |
| 65 | +##w_nodes =['wind1','wind2'] |
| 66 | + |
| 67 | +gd_nodes = ['GS1','GS2','GS3','GS5','GS7','KPCM','KPT','SHV','SRP'] ##Thermoplant nodes with demand |
| 68 | +gn_nodes = ['STH','Thai','Viet'] ##Thermoplants nodes without demand |
| 69 | + |
| 70 | +g_nodes = gd_nodes + gn_nodes |
| 71 | +print ('Gen_Nodes:',len(g_nodes)) |
| 72 | + |
| 73 | +td_nodes = ['GS4','GS6','BTB','BMC','STR','TKO','KPS'] ##Transformers with demand |
| 74 | +tn_nodes = ['IE','KPCG','OSM','PRST'] ##Transformers without demand |
| 75 | + |
| 76 | +d_nodes = gd_nodes + td_nodes |
| 77 | +print ('Demand_Nodes:',len(d_nodes)) |
| 78 | + |
| 79 | +all_nodes = h_nodes + h_imports + gn_nodes + gd_nodes + tn_nodes + td_nodes ## + s_nodes + w_nodes |
| 80 | +print ('Total_Nodes:',len(all_nodes)) |
| 81 | + |
| 82 | + |
| 83 | +##list of types of dispatchable units |
| 84 | +types = ['coal_st','oil_ic','oil_st','imp_viet','imp_thai','slack'] ##,'biomass_st','gas_cc','gas_st' |
| 85 | + |
| 86 | + |
| 87 | +######=================================================######## |
| 88 | +###### Segment A.4 ######## |
| 89 | +######=================================================######## |
| 90 | + |
| 91 | +######====== write data.dat file ======######## |
| 92 | +with open(''+str(data_name)+'.dat', 'w') as f: |
| 93 | + |
| 94 | +###### generator sets by generator nodes |
| 95 | + for z in gd_nodes: |
| 96 | + # node string |
| 97 | + z_int = gd_nodes.index(z) |
| 98 | + f.write('set GD%dGens :=\n' % (z_int+1)) |
| 99 | + # pull relevant generators |
| 100 | + for gen in range(0,len(df_gen)): |
| 101 | + if df_gen.loc[gen,'node'] == z: |
| 102 | + unit_name = df_gen.loc[gen,'name'] |
| 103 | + unit_name = unit_name.replace(' ','_') |
| 104 | + f.write(unit_name + ' ') |
| 105 | + f.write(';\n\n') |
| 106 | + |
| 107 | + for z in gn_nodes: |
| 108 | + # node string |
| 109 | + z_int = gn_nodes.index(z) |
| 110 | + f.write('set GN%dGens :=\n' % (z_int+1)) |
| 111 | + # pull relevant generators |
| 112 | + for gen in range(0,len(df_gen)): |
| 113 | + if df_gen.loc[gen,'node'] == z: |
| 114 | + unit_name = df_gen.loc[gen,'name'] |
| 115 | + unit_name = unit_name.replace(' ','_') |
| 116 | + f.write(unit_name + ' ') |
| 117 | + f.write(';\n\n') |
| 118 | + |
| 119 | + |
| 120 | +####### generator sets by type |
| 121 | + # Coal |
| 122 | + f.write('set Coal_st :=\n') |
| 123 | + # pull relevant generators |
| 124 | + for gen in range(0,len(df_gen)): |
| 125 | + if df_gen.loc[gen,'typ'] == 'coal_st': |
| 126 | + unit_name = df_gen.loc[gen,'name'] |
| 127 | + unit_name = unit_name.replace(' ','_') |
| 128 | + f.write(unit_name + ' ') |
| 129 | + f.write(';\n\n') |
| 130 | + |
| 131 | + # Oil_ic |
| 132 | + f.write('set Oil_ic :=\n') |
| 133 | + # pull relevant generators |
| 134 | + for gen in range(0,len(df_gen)): |
| 135 | + if df_gen.loc[gen,'typ'] == 'oil_ic': |
| 136 | + unit_name = df_gen.loc[gen,'name'] |
| 137 | + unit_name = unit_name.replace(' ','_') |
| 138 | + f.write(unit_name + ' ') |
| 139 | + f.write(';\n\n') |
| 140 | + |
| 141 | + # Oil_st |
| 142 | + f.write('set Oil_st :=\n') |
| 143 | + # pull relevant generators |
| 144 | + for gen in range(0,len(df_gen)): |
| 145 | + if df_gen.loc[gen,'typ'] == 'oil_st': |
| 146 | + unit_name = df_gen.loc[gen,'name'] |
| 147 | + unit_name = unit_name.replace(' ','_') |
| 148 | + f.write(unit_name + ' ') |
| 149 | + f.write(';\n\n') |
| 150 | + |
| 151 | + # Import from Vietnam |
| 152 | + f.write('set Imp_Viet :=\n') |
| 153 | + # pull relevant generators |
| 154 | + for gen in range(0,len(df_gen)): |
| 155 | + if df_gen.loc[gen,'typ'] == 'imp_viet': |
| 156 | + unit_name = df_gen.loc[gen,'name'] |
| 157 | + unit_name = unit_name.replace(' ','_') |
| 158 | + f.write(unit_name + ' ') |
| 159 | + f.write(';\n\n') |
| 160 | + |
| 161 | + # Import from Thailand |
| 162 | + f.write('set Imp_Thai :=\n') |
| 163 | + # pull relevant generators |
| 164 | + for gen in range(0,len(df_gen)): |
| 165 | + if df_gen.loc[gen,'typ'] == 'imp_thai': |
| 166 | + unit_name = df_gen.loc[gen,'name'] |
| 167 | + unit_name = unit_name.replace(' ','_') |
| 168 | + f.write(unit_name + ' ') |
| 169 | + f.write(';\n\n') |
| 170 | + |
| 171 | +## # Biomass |
| 172 | +## f.write('set Biomass_st :=\n') |
| 173 | +## # pull relevant generators |
| 174 | +## for gen in range(0,len(df_gen)): |
| 175 | +## if df_gen.loc[gen,'typ'] == 'biomass_st': |
| 176 | +## unit_name = df_gen.loc[gen,'name'] |
| 177 | +## unit_name = unit_name.replace(' ','_') |
| 178 | +## f.write(unit_name + ' ') |
| 179 | +## f.write(';\n\n') |
| 180 | +## |
| 181 | +## # Gas_cc |
| 182 | +## f.write('set Gas_cc :=\n') |
| 183 | +## # pull relevant generators |
| 184 | +## for gen in range(0,len(df_gen)): |
| 185 | +## if df_gen.loc[gen,'typ'] == 'gas_cc': |
| 186 | +## unit_name = df_gen.loc[gen,'name'] |
| 187 | +## unit_name = unit_name.replace(' ','_') |
| 188 | +## f.write(unit_name + ' ') |
| 189 | +## f.write(';\n\n') |
| 190 | +## |
| 191 | +## # Gas_st |
| 192 | +## f.write('set Gas_st :=\n') |
| 193 | +## # pull relevant generators |
| 194 | +## for gen in range(0,len(df_gen)): |
| 195 | +## if df_gen.loc[gen,'typ'] == 'gas_st': |
| 196 | +## unit_name = df_gen.loc[gen,'name'] |
| 197 | +## unit_name = unit_name.replace(' ','_') |
| 198 | +## f.write(unit_name + ' ') |
| 199 | +## f.write(';\n\n') |
| 200 | + |
| 201 | + # Slack |
| 202 | + f.write('set Slack :=\n') |
| 203 | + # pull relevant generators |
| 204 | + for gen in range(0,len(df_gen)): |
| 205 | + if df_gen.loc[gen,'typ'] == 'slack': |
| 206 | + unit_name = df_gen.loc[gen,'name'] |
| 207 | + unit_name = unit_name.replace(' ','_') |
| 208 | + f.write(unit_name + ' ') |
| 209 | + f.write(';\n\n') |
| 210 | + |
| 211 | + |
| 212 | +######=================================================######## |
| 213 | +###### Segment A.5 ######## |
| 214 | +######=================================================######## |
| 215 | + |
| 216 | +######Set nodes, sources and sinks |
| 217 | + # nodes |
| 218 | + f.write('set nodes :=\n') |
| 219 | + for z in all_nodes: |
| 220 | + f.write(z + ' ') |
| 221 | + f.write(';\n\n') |
| 222 | + |
| 223 | + # sources |
| 224 | + f.write('set sources :=\n') |
| 225 | + for z in all_nodes: |
| 226 | + f.write(z + ' ') |
| 227 | + f.write(';\n\n') |
| 228 | + |
| 229 | + # sinks |
| 230 | + f.write('set sinks :=\n') |
| 231 | + for z in all_nodes: |
| 232 | + f.write(z + ' ') |
| 233 | + f.write(';\n\n') |
| 234 | + |
| 235 | + # hydro_nodes |
| 236 | + f.write('set h_nodes :=\n') |
| 237 | + for z in h_nodes: |
| 238 | + f.write(z + ' ') |
| 239 | + f.write(';\n\n') |
| 240 | + |
| 241 | + # hydro_nodes for import |
| 242 | + f.write('set h_imports :=\n') |
| 243 | + for z in h_imports: |
| 244 | + f.write(z + ' ') |
| 245 | + f.write(';\n\n') |
| 246 | + |
| 247 | +## # solar_nodes |
| 248 | +## f.write('set s_nodes :=\n') |
| 249 | +## for z in s_nodes: |
| 250 | +## f.write(z + ' ') |
| 251 | +## f.write(';\n\n') |
| 252 | +## |
| 253 | +## # wind_nodes |
| 254 | +## f.write('set w_nodes :=\n') |
| 255 | +## for z in w_nodes: |
| 256 | +## f.write(z + ' ') |
| 257 | +## f.write(';\n\n') |
| 258 | + |
| 259 | + # all demand nodes |
| 260 | + f.write('set d_nodes :=\n') |
| 261 | + for z in d_nodes: |
| 262 | + f.write(z + ' ') |
| 263 | + f.write(';\n\n') |
| 264 | + |
| 265 | + # generator with demand nodes |
| 266 | + f.write('set gd_nodes :=\n') |
| 267 | + for z in gd_nodes: |
| 268 | + f.write(z + ' ') |
| 269 | + f.write(';\n\n') |
| 270 | + |
| 271 | + # generator without demand nodes |
| 272 | + f.write('set gn_nodes :=\n') |
| 273 | + for z in gn_nodes: |
| 274 | + f.write(z + ' ') |
| 275 | + f.write(';\n\n') |
| 276 | + |
| 277 | + # transformer with demand nodes |
| 278 | + f.write('set td_nodes :=\n') |
| 279 | + for z in td_nodes: |
| 280 | + f.write(z + ' ') |
| 281 | + f.write(';\n\n') |
| 282 | + |
| 283 | + # transformer without demand nodes |
| 284 | + f.write('set tn_nodes :=\n') |
| 285 | + for z in tn_nodes: |
| 286 | + f.write(z + ' ') |
| 287 | + f.write(';\n\n') |
| 288 | + |
| 289 | + |
| 290 | +######=================================================######## |
| 291 | +###### Segment A.6 ######## |
| 292 | +######=================================================######## |
| 293 | + |
| 294 | +####### simulation period and horizon |
| 295 | + f.write('param SimHours := %d;' % SimHours) |
| 296 | + f.write('\n') |
| 297 | + f.write('param SimDays:= %d;' % SimDays) |
| 298 | + f.write('\n\n') |
| 299 | + f.write('param HorizonHours := %d;' % HorizonHours) |
| 300 | + f.write('\n\n') |
| 301 | + f.write('param TransLoss := %0.3f;' % TransLoss) |
| 302 | + f.write('\n\n') |
| 303 | + f.write('param n1criterion := %0.3f;' % n1criterion) |
| 304 | + f.write('\n\n') |
| 305 | + f.write('param spin_margin := %0.3f;' % spin_margin) |
| 306 | + f.write('\n\n') |
| 307 | + |
| 308 | + |
| 309 | +######=================================================######## |
| 310 | +###### Segment A.7 ######## |
| 311 | +######=================================================######## |
| 312 | + |
| 313 | +####### create parameter matrix for generators |
| 314 | + f.write('param:' + '\t') |
| 315 | + for c in df_gen.columns: |
| 316 | + if c != 'name': |
| 317 | + f.write(c + '\t') |
| 318 | + f.write(':=\n\n') |
| 319 | + for i in range(0,len(df_gen)): |
| 320 | + for c in df_gen.columns: |
| 321 | + if c == 'name': |
| 322 | + unit_name = df_gen.loc[i,'name'] |
| 323 | + unit_name = unit_name.replace(' ','_') |
| 324 | + f.write(unit_name + '\t') |
| 325 | + else: |
| 326 | + f.write(str((df_gen.loc[i,c])) + '\t') |
| 327 | + f.write('\n') |
| 328 | + f.write(';\n\n') |
| 329 | + |
| 330 | +######=================================================######## |
| 331 | +###### Segment A.8 ######## |
| 332 | +######=================================================######## |
| 333 | + |
| 334 | +####### create parameter matrix for transmission paths (source and sink connections) |
| 335 | + f.write('param:' + '\t' + 'linemva' + '\t' +'linesus :=' + '\n') |
| 336 | + for z in all_nodes: |
| 337 | + for x in all_nodes: |
| 338 | + f.write(z + '\t' + x + '\t') |
| 339 | + match = 0 |
| 340 | + for p in range(0,len(df_paths)): |
| 341 | + source = df_paths.loc[p,'source'] |
| 342 | + sink = df_paths.loc[p,'sink'] |
| 343 | + if source == z and sink == x: |
| 344 | + match = 1 |
| 345 | + p_match = p |
| 346 | + if match > 0: |
| 347 | + f.write(str(df_paths.loc[p_match,'linemva']) + '\t' + str(df_paths.loc[p_match,'linesus']) + '\n') |
| 348 | + else: |
| 349 | + f.write('0' + '\t' + '0' + '\n') |
| 350 | + f.write(';\n\n') |
| 351 | + |
| 352 | +######=================================================######## |
| 353 | +###### Segment A.9 ######## |
| 354 | +######=================================================######## |
| 355 | + |
| 356 | +####### Hourly timeseries (load, hydro, solar, wind, reserve) |
| 357 | + # load (hourly) |
| 358 | + f.write('param:' + '\t' + 'SimDemand:=' + '\n') |
| 359 | + for z in d_nodes: |
| 360 | + for h in range(0,len(df_load)): |
| 361 | + f.write(z + '\t' + str(h+1) + '\t' + str(df_load.loc[h,z]) + '\n') |
| 362 | + f.write(';\n\n') |
| 363 | + |
| 364 | + # hydro (hourly) |
| 365 | + f.write('param:' + '\t' + 'SimHydro:=' + '\n') |
| 366 | + for z in h_nodes: |
| 367 | + for h in range(0,len(df_hydro)): |
| 368 | + f.write(z + '\t' + str(h+1) + '\t' + str(df_hydro.loc[h,z]) + '\n') |
| 369 | + f.write(';\n\n') |
| 370 | + |
| 371 | + # hydro_import (hourly) |
| 372 | + f.write('param:' + '\t' + 'SimHydroImport:=' + '\n') |
| 373 | + for z in h_imports: |
| 374 | + for h in range(0,len(df_hydro_import)): |
| 375 | + f.write(z + '\t' + str(h+1) + '\t' + str(df_hydro_import.loc[h,z]) + '\n') |
| 376 | + f.write(';\n\n') |
| 377 | + |
| 378 | +## # solar (hourly) |
| 379 | +## f.write('param:' + '\t' + 'SimSolar:=' + '\n') |
| 380 | +## for z in s_nodes: |
| 381 | +## for h in range(0,len(df_solar)): |
| 382 | +## f.write(z + '\t' + str(h+1) + '\t' + str(df_solar.loc[h,z]) + '\n') |
| 383 | +## f.write(';\n\n') |
| 384 | +## |
| 385 | +## # wind (hourly) |
| 386 | +## f.write('param:' + '\t' + 'SimWind:=' + '\n') |
| 387 | +## for z in w_nodes: |
| 388 | +## for h in range(0,len(df_wind)): |
| 389 | +## f.write(z + '\t' + str(h+1) + '\t' + str(df_wind.loc[h,z]) + '\n') |
| 390 | +## f.write(';\n\n') |
| 391 | + |
| 392 | +###### System-wide hourly reserve |
| 393 | + f.write('param' + '\t' + 'SimReserves:=' + '\n') |
| 394 | + for h in range(0,len(df_load)): |
| 395 | + f.write(str(h+1) + '\t' + str(df_reserves.loc[h,'Reserve']) + '\n') |
| 396 | + f.write(';\n\n') |
| 397 | + |
| 398 | + |
| 399 | +print ('Complete:',data_name) |
0 commit comments