You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
|[Reader](readme.md)||| Component to passing namespace,name to downstream tasks || output_data |||
26
-
|[PSI](psi.md)| PSI |[psi](../../../../examples/pipeline/psi)| Compute intersect data set of multiple parties without leakage of difference set information. Mainly used in hetero scenario task. | input_data | output_data |||
27
-
|[Sampling](sample.md)| Sample |[sample](../../../../examples/pipeline/sample)| Federated Sampling data so that its distribution become balance in each party.This module supports local and federation scenario. | input_data | output_data |||
28
-
|[Data Split](data_split.md)| DataSplit |[data split](../../../../examples/pipeline/data_split)| Split one data table into 3 tables by given ratio or count, this module supports local and federation scenario | input_data | train_output_data, validate_output_data, test_output_data |||
|[Data Statistics](statistics.md)| Statistics |[statistics](../../../../examples/pipeline/statistics)| This component will do some statistical work on the data, including statistical mean, maximum and minimum, median, etc. | input_data ||| output_model |
31
-
|[Hetero Feature Binning](feature_binning.md)| HeteroFeatureBinning |[hetero feature binning](../../../../examples/pipeline/hetero_feature_binning)| With binning input data, calculates each column's iv and woe and transform data according to the binned information. | train_data, test_data | train_output_data, test_output_data | input_model | output_model |
32
-
|[Hetero Feature Selection](feature_selection.md)| HeteroFeatureSelection |[hetero feature selection](../../../../examples/pipeline/hetero_feature_selection)| Provide 3 types of filters. Each filters can select columns according to user config | train_data, test_data | train_output_data, test_output_data | input_models, input_model | output_model |
23
+
| Algorithm | Module Name | Examples | Description | Data Input | Data Output | Model Input | Model Output |
|[Reader](readme.md)||| Component to passing namespace,name to downstream tasks || output_data |||
26
+
|[PSI](psi.md)| PSI |[psi](../../../../examples/pipeline/psi)| Compute intersect data set of multiple parties without leakage of difference set information. Mainly used in hetero scenario task. | input_data | output_data |||
27
+
|[Sampling](sample.md)| Sample |[sample](../../../../examples/pipeline/sample)| Federated Sampling data so that its distribution become balance in each party.This module supports local and federation scenario. | input_data | output_data |||
28
+
|[Data Split](data_split.md)| DataSplit |[data split](../../../../examples/pipeline/data_split)| Split one data table into 3 tables by given ratio or count, this module supports local and federation scenario | input_data | train_output_data, validate_output_data, test_output_data |||
|[Data Statistics](statistics.md)| Statistics |[statistics](../../../../examples/pipeline/statistics)| This component will do some statistical work on the data, including statistical mean, maximum and minimum, median, etc. | input_data ||| output_model |
31
+
|[Hetero Feature Binning](feature_binning.md)| HeteroFeatureBinning |[hetero feature binning](../../../../examples/pipeline/hetero_feature_binning)| With binning input data, calculates each column's iv and woe and transform data according to the binned information. | train_data, test_data | train_output_data, test_output_data | input_model | output_model |
32
+
|[Hetero Feature Selection](feature_selection.md)| HeteroFeatureSelection |[hetero feature selection](../../../../examples/pipeline/hetero_feature_selection)| Provide 3 types of filters. Each filters can select columns according to user config | train_data, test_data | train_output_data, test_output_data | input_models, input_model | output_model |
|[Evaluation](evaluation.md)| Evaluation |[evaluation](../../../../examples/pipeline/hetero_secureboost)| Output the model evaluation metrics for user. | input_datas ||||
40
-
|[Union](union.md)| Union |[union](../../../../examples/pipeline/union)| Combine multiple data tables into one. | input_datas | output_data |||
39
+
|[Evaluation](evaluation.md)| Evaluation |[evaluation](../../../../examples/pipeline/hetero_secureboost)| Output the model evaluation metrics for user. | input_datas ||||
40
+
|[Union](union.md)| Union |[union](../../../../examples/pipeline/union)| Combine multiple data tables into one. | input_datas | output_data |||
41
41
|[SSHE-LR](logistic_regression.md)| SSHELR |[SSHE LR](../../../../examples/pipeline/sshe_lr)| Build hetero logistic regression model through two parties. | train_data, validate_data, test_data, cv_data | train_output_data, test_output_data, cv_output_datas | input_model, warm_start_model | output_model |
42
42
|[SSHE-LinR](linear_regression.md)| SSHELinR |[SSHE LinR](../../../../examples/pipeline/sshe_linr)| Build hetero linear regression model through two parties. | train_data, validate_data, test_data, cv_data | train_output_data, test_output_data, cv_output_datas | input_model, warm_start_model | output_model |
43
+
|[Feature Correlation](feature_correlation.md)| FeatureCorrelation |[Feature Correlation](../../../../examples/pipeline/feature_correlation)| Compute feature correlation locally or in hetero-federated setting. | input_data || input_model | output_model |
0 commit comments