From 77736ba7da38cdbca23c17d1f1a1af8ebdb0426b Mon Sep 17 00:00:00 2001 From: Moritz Schauer Date: Wed, 6 Jul 2022 12:55:47 +0200 Subject: [PATCH] Update references --- docs/src/linear_systems/idrs.md | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/docs/src/linear_systems/idrs.md b/docs/src/linear_systems/idrs.md index f530563d..47cabf42 100644 --- a/docs/src/linear_systems/idrs.md +++ b/docs/src/linear_systems/idrs.md @@ -11,7 +11,8 @@ idrs! ## Implementation details -The current implementation is based on the [MATLAB version](http://ta.twi.tudelft.nl/nw/users/gijzen/idrs.m) by Van Gijzen and Sonneveld. For background see [^Sonneveld2008], [^VanGijzen2011] and [the IDR(s) webpage](http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html). +The current implementation is based on the [MATLAB version](http://ta.twi.tudelft.nl/nw/users/gijzen/idrs.m) by Van Gijzen and Sonneveld. For background see [^Sonneveld2008], [^VanGijzen2011], [the IDR(s) webpage](http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html) and the IDR chapter in [^Meurant2020]. -[^Sonneveld2008]: IDR(s): a family of simple and fast algorithms for solving large nonsymmetric linear systems. P. Sonneveld and M. B. van Gijzen SIAM J. Sci. Comput. Vol. 31, No. 2, pp. 1035--1062, 2008 -[^VanGijzen2011]: Algorithm 913: An Elegant IDR(s) Variant that Efficiently Exploits Bi-orthogonality Properties. M. B. van Gijzen and P. Sonneveld ACM Trans. Math. Software,, Vol. 38, No. 1, pp. 5:1-5:19, 2011 \ No newline at end of file +[^Sonneveld2008]: IDR(s): a family of simple and fast algorithms for solving large nonsymmetric linear systems. P. Sonneveld and M. B. van Gijzen, SIAM J. Sci. Comput. Vol. 31, No. 2, pp. 1035--1062, 2008 +[^VanGijzen2011]: Algorithm 913: An Elegant IDR(s) Variant that Efficiently Exploits Bi-orthogonality Properties. M. B. van Gijzen and P. Sonneveld ACM Trans. Math. Software,, Vol. 38, No. 1, pp. 5:1-5:19, 2011 +[^Meurant2020]: The IDR family. G. Meurant and J. Duintjer Tebbens. In: Krylov Methods for Nonsymmetric Linear Systems. Springer Series in Computational Mathematics, vol 57. Springer, 2020. [doi:10.1007/978-3-030-55251-0_10](https://doi.org/10.1007/978-3-030-55251-0_10)