Skip to content

Commit e453eda

Browse files
committed
Remove MLJ extension
1 parent ab20625 commit e453eda

File tree

5 files changed

+4
-65
lines changed

5 files changed

+4
-65
lines changed

Project.toml

Lines changed: 0 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -17,20 +17,13 @@ StyledStrings = "f489334b-da3d-4c2e-b8f0-e476e12c162b"
1717
TableTransforms = "0d432bfd-3ee1-4ac1-886a-39f05cc69a3e"
1818
Tables = "bd369af6-aec1-5ad0-b16a-f7cc5008161c"
1919

20-
[weakdeps]
21-
MLJModelInterface = "e80e1ace-859a-464e-9ed9-23947d8ae3ea"
22-
23-
[extensions]
24-
StatsLearnModelsMLJModelInterfaceExt = "MLJModelInterface"
25-
2620
[compat]
2721
ColumnSelectors = "1.0"
2822
DataScienceTraits = "1.0"
2923
DecisionTree = "0.12"
3024
Distances = "0.10"
3125
Distributions = "0.25"
3226
GLM = "1.9"
33-
MLJModelInterface = "1.9"
3427
NearestNeighbors = "0.4"
3528
PrettyTables = "3.0.2"
3629
StatsBase = "0.33, 0.34"

README.md

Lines changed: 4 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -37,12 +37,11 @@ preds = learn(test)
3737
```
3838

3939
The function `label` is used to tag columns of the table with target labels,
40-
which can be categorical or continuous. All remaining columns are assumed to
41-
be predictors.
40+
which can be categorical or continuous. Remaining columns are assumed to be
41+
predictors.
4242

43-
The package exports native Julia models from various packages
44-
in the ecosystem. It is also possible to use models from the
45-
[MLJ.jl](https://github.com/JuliaAI/MLJ.jl) stack.
43+
Please check the [models](https://github.com/JuliaML/StatsLearnModels.jl/tree/main/src/models)
44+
directory for documentation on available models and their parameters.
4645

4746
[build-img]: https://img.shields.io/github/actions/workflow/status/JuliaML/StatsLearnModels.jl/CI.yml?branch=main&style=flat-square
4847
[build-url]: https://github.com/JuliaML/StatsLearnModels.jl/actions

ext/StatsLearnModelsMLJModelInterfaceExt.jl

Lines changed: 0 additions & 36 deletions
This file was deleted.

test/Project.toml

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -2,8 +2,6 @@
22
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
33
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
44
GLM = "38e38edf-8417-5370-95a0-9cbb8c7f171a"
5-
MLJ = "add582a8-e3ab-11e8-2d5e-e98b27df1bc7"
6-
MLJDecisionTreeInterface = "c6f25543-311c-4c74-83dc-3ea6d1015661"
75
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
86
TableTransforms = "0d432bfd-3ee1-4ac1-886a-39f05cc69a3e"
97
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"

test/runtests.jl

Lines changed: 0 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -7,8 +7,6 @@ using Test
77
using GLM: ProbitLink
88
using Distributions: Binomial
99

10-
import MLJ, MLJDecisionTreeInterface
11-
1210
const SLM = StatsLearnModels
1311

1412
@testset "StatsLearnModels.jl" begin
@@ -99,17 +97,4 @@ const SLM = StatsLearnModels
9997
accuracy = count(pred.target .== iris.target[test]) / length(test)
10098
@test accuracy > 0.9
10199
end
102-
103-
@testset "MLJ" begin
104-
Random.seed!(123)
105-
iris = DataFrame(MLJ.load_iris())
106-
input = iris[:, Not(:target)]
107-
output = iris[:, [:target]]
108-
train, test = MLJ.partition(1:nrow(input), 0.7, rng=123)
109-
Tree = MLJ.@load(DecisionTreeClassifier, pkg = DecisionTree, verbosity = 0)
110-
fmodel = SLM.fit(Tree(), input[train, :], output[train, :])
111-
pred = SLM.predict(fmodel, input[test, :])
112-
accuracy = count(pred.target .== output.target[test]) / length(test)
113-
@test accuracy > 0.9
114-
end
115100
end

0 commit comments

Comments
 (0)