@@ -97,21 +97,21 @@ inline auto LayerFactory::build(LayerModel& model, std::vector<int>& shapeOfInpu
9797 throw InvalidArchitectureException (" Input of layer has size of 0." );
9898 }
9999 model.neuron .numberOfInputs = model.numberOfInputs ;
100- model.neuron .batchSize = 1 ;
100+ model.neuron .numberOfUses = 1 ;
101101 model.neuron .numberOfWeights = model.neuron .numberOfInputs + 1 ; // for the bias
102102 model.numberOfOutputs = model.numberOfNeurons ;
103103 return std::make_unique<FullyConnected>(model, optimizer);
104104
105105 case recurrence:
106106 model.neuron .numberOfInputs = model.numberOfInputs ;
107- model.neuron .batchSize = 1 ;
107+ model.neuron .numberOfUses = 1 ;
108108 model.neuron .numberOfWeights = model.neuron .numberOfInputs + 2 ;
109109 model.numberOfOutputs = model.numberOfNeurons ;
110110 return std::make_unique<Recurrence>(model, optimizer);
111111
112112 case gruLayer:
113113 model.neuron .numberOfInputs = model.numberOfInputs ;
114- model.neuron .batchSize = 1 ;
114+ model.neuron .numberOfUses = 1 ;
115115 model.neuron .numberOfWeights = model.neuron .numberOfInputs + 2 ;
116116 model.numberOfOutputs = model.numberOfNeurons ;
117117 return std::make_unique<GruLayer>(model, optimizer);
@@ -168,7 +168,7 @@ inline auto LayerFactory::build(LayerModel& model, std::vector<int>& shapeOfInpu
168168 model.numberOfKernels = model.numberOfNeurons ;
169169 model.numberOfKernelsPerFilter = model.numberOfKernels / model.numberOfFilters ;
170170 model.neuron .numberOfInputs = model.kernelSize * model.shapeOfInput [C];
171- model.neuron .batchSize = 1 ;
171+ model.neuron .numberOfUses = 1 ;
172172 model.neuron .numberOfWeights = model.neuron .numberOfInputs + 1 ;
173173 model.numberOfOutputs = model.numberOfNeurons ;
174174 return std::make_unique<LocallyConnected1D>(model, optimizer);
@@ -185,7 +185,7 @@ inline auto LayerFactory::build(LayerModel& model, std::vector<int>& shapeOfInpu
185185 model.numberOfKernels = model.numberOfNeurons ;
186186 model.numberOfKernelsPerFilter = model.numberOfKernels / model.numberOfFilters ;
187187 model.neuron .numberOfInputs = model.kernelSize * model.kernelSize * model.shapeOfInput [C];
188- model.neuron .batchSize = 1 ;
188+ model.neuron .numberOfUses = 1 ;
189189 model.neuron .numberOfWeights = model.neuron .numberOfInputs + 1 ;
190190 model.numberOfOutputs = model.numberOfNeurons ;
191191 return std::make_unique<LocallyConnected2D>(model, optimizer);
@@ -213,7 +213,7 @@ inline auto LayerFactory::build(LayerModel& model, std::vector<int>& shapeOfInpu
213213 computeNumberOfKernelsForConvolution1D (model.numberOfFilters , model.shapeOfInput );
214214 model.numberOfKernelsPerFilter = model.numberOfKernels / model.numberOfFilters ;
215215 model.neuron .numberOfInputs = model.kernelSize * model.shapeOfInput [C];
216- model.neuron .batchSize = model.numberOfKernelsPerFilter ;
216+ model.neuron .numberOfUses = model.numberOfKernelsPerFilter ;
217217 model.neuron .numberOfWeights = model.neuron .numberOfInputs + 1 ;
218218 model.numberOfOutputs = model.numberOfNeurons ;
219219 return std::make_unique<Convolution1D>(model, optimizer);
@@ -230,7 +230,7 @@ inline auto LayerFactory::build(LayerModel& model, std::vector<int>& shapeOfInpu
230230 computeNumberOfKernelsForConvolution2D (model.numberOfFilters , model.shapeOfInput );
231231 model.numberOfKernelsPerFilter = model.numberOfKernels / model.numberOfFilters ;
232232 model.neuron .numberOfInputs = model.kernelSize * model.kernelSize * model.shapeOfInput [C];
233- model.neuron .batchSize = model.numberOfKernelsPerFilter ;
233+ model.neuron .numberOfUses = model.numberOfKernelsPerFilter ;
234234 model.neuron .numberOfWeights = model.neuron .numberOfInputs + 1 ;
235235 model.numberOfOutputs = model.numberOfNeurons ;
236236 return std::make_unique<Convolution2D>(model, optimizer);
0 commit comments