|
| 1 | +# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | +import math |
| 15 | +from typing import Any, Dict, List |
| 16 | + |
| 17 | +import pytest |
| 18 | +import torch |
| 19 | + |
| 20 | +import nemo_automodel.components.datasets.llm.retrieval_collator as rc |
| 21 | + |
| 22 | + |
| 23 | +class FakeTokenizer: |
| 24 | + def __call__( |
| 25 | + self, |
| 26 | + texts: List[str], |
| 27 | + max_length: int, |
| 28 | + padding: Any, |
| 29 | + truncation: bool, |
| 30 | + return_token_type_ids: bool, |
| 31 | + ) -> Dict[str, List[List[int]]]: |
| 32 | + # Simple whitespace tokenizer: ids are range(len(tokens)) |
| 33 | + input_ids = [] |
| 34 | + attention_masks = [] |
| 35 | + for t in texts: |
| 36 | + tokens = t.split() |
| 37 | + if truncation: |
| 38 | + tokens = tokens[:max_length] |
| 39 | + ids = list(range(len(tokens))) |
| 40 | + mask = [1] * len(ids) |
| 41 | + input_ids.append(ids) |
| 42 | + attention_masks.append(mask) |
| 43 | + return {"input_ids": input_ids, "attention_mask": attention_masks} |
| 44 | + |
| 45 | + def pad( |
| 46 | + self, |
| 47 | + features: List[Dict[str, List[int]]], |
| 48 | + padding: Any, |
| 49 | + pad_to_multiple_of: int, |
| 50 | + return_tensors: str, |
| 51 | + ) -> Dict[str, torch.Tensor]: |
| 52 | + # Determine max length and round to multiple if requested |
| 53 | + max_len = max(len(f["input_ids"]) for f in features) if features else 0 |
| 54 | + if pad_to_multiple_of and max_len % pad_to_multiple_of != 0: |
| 55 | + max_len = int(math.ceil(max_len / pad_to_multiple_of) * pad_to_multiple_of) |
| 56 | + input_ids = [] |
| 57 | + attention_masks = [] |
| 58 | + for f in features: |
| 59 | + ids = list(f["input_ids"]) |
| 60 | + mask = list(f["attention_mask"]) |
| 61 | + pad_len = max_len - len(ids) |
| 62 | + ids = ids + [0] * pad_len |
| 63 | + mask = mask + [0] * pad_len |
| 64 | + input_ids.append(ids) |
| 65 | + attention_masks.append(mask) |
| 66 | + return { |
| 67 | + "input_ids": torch.tensor(input_ids, dtype=torch.long), |
| 68 | + "attention_mask": torch.tensor(attention_masks, dtype=torch.long), |
| 69 | + } |
| 70 | + |
| 71 | + |
| 72 | +def test_unpack_doc_values(): |
| 73 | + features = [ |
| 74 | + {"input_ids": [[1, 2], [3]], "attention_mask": [[1, 1], [1]]}, |
| 75 | + ] |
| 76 | + out = rc._unpack_doc_values(features) |
| 77 | + assert out == [{"input_ids": [1, 2], "attention_mask": [1, 1]}, {"input_ids": [3], "attention_mask": [1]}] |
| 78 | + |
| 79 | + |
| 80 | +def test_merge_and_convert_helpers(): |
| 81 | + collator = rc.RetrievalBiencoderCollator(FakeTokenizer()) |
| 82 | + query_batch = {"input_ids": [[10], [20]], "attention_mask": [[1], [1]]} # batch_size = 2 |
| 83 | + # 2 examples * train_n_passages(=2) = 4 document rows |
| 84 | + doc_batch = {"input_ids": [[100], [101], [110], [111]], "attention_mask": [[1], [1], [1], [1]]} |
| 85 | + merged = collator._merge_batch_dict(query_batch, doc_batch, train_n_passages=2) |
| 86 | + # Ensure query keys are prefixed and doc keys reshaped to [batch, passages, seq] |
| 87 | + assert "q_input_ids" in merged and "d_input_ids" in merged |
| 88 | + assert merged["d_input_ids"] == [[[100], [101]], [[110], [111]]] |
| 89 | + # Convert dict-of-lists to list-of-dicts |
| 90 | + lst = collator._convert_dict_to_list({"a": [1, 2], "b": [3, 4]}) |
| 91 | + assert lst == [{"a": 1, "b": 3}, {"a": 2, "b": 4}] |
| 92 | + |
| 93 | + |
| 94 | +def _make_batch(num_examples: int = 2, docs_per_example: int = 3) -> List[Dict[str, Any]]: |
| 95 | + batch = [] |
| 96 | + for i in range(num_examples): |
| 97 | + question = f"what is item {i}" |
| 98 | + docs = [f"doc {i}-{j}" for j in range(docs_per_example)] |
| 99 | + batch.append({"question": question, "doc_text": docs, "doc_image": [""] * docs_per_example}) |
| 100 | + return batch |
| 101 | + |
| 102 | + |
| 103 | +def test_collator_end_to_end_no_prefix(): |
| 104 | + tok = FakeTokenizer() |
| 105 | + collator = rc.RetrievalBiencoderCollator(tokenizer=tok, q_max_len=16, p_max_len=16, padding=True) |
| 106 | + batch = _make_batch(num_examples=2, docs_per_example=3) |
| 107 | + out = collator(batch) |
| 108 | + # Expected keys |
| 109 | + for k in ["q_input_ids", "q_attention_mask", "d_input_ids", "d_attention_mask", "labels"]: |
| 110 | + assert k in out |
| 111 | + # Shapes: queries [B, Lq], docs [B * P, Ld], labels [B] |
| 112 | + assert out["q_input_ids"].shape[0] == 2 |
| 113 | + assert out["d_input_ids"].shape[0] == 2 * 3 |
| 114 | + assert out["labels"].dtype == torch.long and out["labels"].shape[0] == 2 and torch.all(out["labels"] == 0) |
| 115 | + # Ensure attention masks align with input_ids shapes |
| 116 | + assert out["q_input_ids"].shape == out["q_attention_mask"].shape |
| 117 | + assert out["d_input_ids"].shape == out["d_attention_mask"].shape |
| 118 | + |
| 119 | + |
| 120 | +def test_collator_with_prefix_and_pad_multiple(): |
| 121 | + tok = FakeTokenizer() |
| 122 | + collator = rc.RetrievalBiencoderCollator( |
| 123 | + tokenizer=tok, q_max_len=32, p_max_len=32, query_prefix="Q:", passage_prefix="D:", padding=True, pad_to_multiple_of=4 |
| 124 | + ) |
| 125 | + # Make varying lengths so padding is exercised and rounded to multiple-of 4 |
| 126 | + batch = [ |
| 127 | + {"question": "short", "doc_text": ["tiny", "a bit longer"], "doc_image": ["", ""]}, |
| 128 | + {"question": "this is a somewhat longer question", "doc_text": ["short doc", "this is a longish doc text"], "doc_image": ["", ""]}, |
| 129 | + ] |
| 130 | + out = collator(batch) |
| 131 | + # Verify padding rounded to multiple of 4 |
| 132 | + assert out["q_input_ids"].shape[1] % 4 == 0 |
| 133 | + assert out["d_input_ids"].shape[1] % 4 == 0 |
| 134 | + # Still produces expected label size |
| 135 | + assert out["labels"].shape[0] == 2 |
| 136 | + |
| 137 | + |
0 commit comments