|
| 1 | +r""" |
| 2 | +======================================== |
| 3 | +Plot Paths Through Non-Euclidean Spaces |
| 4 | +======================================== |
| 5 | +
|
| 6 | +This example shows three variations on how 'from_path_ends' can be |
| 7 | +used to plot paths between points in rotational and vector spaces. |
| 8 | +
|
| 9 | +This functionality is available in :class:`~orix.vector.Vector3d`, |
| 10 | +:class:`~orix.quaternions.Rotation`, |
| 11 | +:class:`~orix.quaternions.Orientation`, |
| 12 | +and :class:`~orix.quaternions.Misorientation`. |
| 13 | +""" |
| 14 | + |
| 15 | +import matplotlib.pyplot as plt |
| 16 | +from matplotlib import cm |
| 17 | +import numpy as np |
| 18 | + |
| 19 | +from orix.quaternion import Misorientation, Orientation, Rotation |
| 20 | +from orix.quaternion.symmetry import D3, Oh |
| 21 | +from orix.vector import Vector3d |
| 22 | + |
| 23 | +fig = plt.figure(figsize=(4, 8)) |
| 24 | + |
| 25 | +# ========= # |
| 26 | +# Example 1: Plotting a path of rotations with no symmetry in homochoric space |
| 27 | +# ========= # |
| 28 | +rots_along_path = Rotation( |
| 29 | + data=np.array( |
| 30 | + [ |
| 31 | + [1, 0, 0, 0], |
| 32 | + [1, 0, 0, 1], |
| 33 | + [1, 1, 1, 1], |
| 34 | + ] |
| 35 | + ) |
| 36 | +) |
| 37 | +n_steps = 20 |
| 38 | +rotation_path = Rotation.from_path_ends(rots_along_path, steps=n_steps) |
| 39 | +# create an Orientation loop using this path with no symmetry elements |
| 40 | +ori_path = Orientation(rotation_path) |
| 41 | +# plot the path in homochoric space |
| 42 | +segment_colors = cm.inferno(np.linspace(0, 1, n_steps)) |
| 43 | + |
| 44 | +path_colors = np.vstack([segment_colors for x in range(rots_along_path.size - 1)]) |
| 45 | +ori_path.scatter(figure=fig, position=[3, 1, 1], marker=">", c=path_colors) |
| 46 | +fig.axes[0].set_title(r"$90^\circ$ rotation around X, then Y") |
| 47 | + |
| 48 | +# ========= # |
| 49 | +# Example 2: Plotting the rotation of several orientations in m3m Rodrigues |
| 50 | +# space around the z axis. |
| 51 | +# ========= # |
| 52 | +oris = Orientation( |
| 53 | + data=np.array( |
| 54 | + [ |
| 55 | + [0.69, 0.24, 0.68, 0.01], |
| 56 | + [0.26, 0.59, 0.32, 0.7], |
| 57 | + [0.07, 0.17, 0.93, 0.31], |
| 58 | + [0.6, 0.03, 0.61, 0.52], |
| 59 | + [0.51, 0.38, 0.34, 0.69], |
| 60 | + [0.31, 0.86, 0.22, 0.35], |
| 61 | + [0.68, 0.67, 0.06, 0.31], |
| 62 | + [0.01, 0.12, 0.05, 0.99], |
| 63 | + [0.39, 0.45, 0.34, 0.72], |
| 64 | + [0.65, 0.59, 0.46, 0.15], |
| 65 | + ] |
| 66 | + ), |
| 67 | + symmetry=Oh, |
| 68 | +).reduce() |
| 69 | +# define a 20 degree rotation around the z axis |
| 70 | +shift = Orientation.from_axes_angles([0, 0, 1], np.pi / 9) |
| 71 | +segment_colors = cm.inferno(np.linspace(0, 1, 10)) |
| 72 | + |
| 73 | +ori_paths = [] |
| 74 | +for ori in oris: |
| 75 | + shifted = (shift * ori).reduce() |
| 76 | + to_from = Orientation.stack([ori, shifted]).flatten() |
| 77 | + ori_paths.append(Orientation.from_path_ends(to_from, steps=10)) |
| 78 | +# plot a path in roddrigues space with m-3m (cubic) symmetry. |
| 79 | +ori_path = Orientation.stack(ori_paths).flatten() |
| 80 | +ori_path.symmetry = Oh |
| 81 | +ori_path.scatter( |
| 82 | + figure=fig, |
| 83 | + position=[3, 1, 2], |
| 84 | + marker=">", |
| 85 | + c=np.tile(segment_colors, [10, 1]), |
| 86 | + projection="rodrigues", |
| 87 | +) |
| 88 | +fig.axes[1].set_title(r"$20^{\circ}$ rotations around X-axis in m3m") |
| 89 | + |
| 90 | +# ========= # |
| 91 | +# Example 3: creating a customized Wulf Plotting the rotation of several orientations in m3m Rodrigues |
| 92 | +# space around the z axis. |
| 93 | +# ========= # |
| 94 | + |
| 95 | + |
| 96 | +# plot vectors |
| 97 | +ax_upper = plt.subplot(3, 1, 3, projection="stereographic", hemisphere="upper") |
| 98 | +r90x = Rotation.from_axes_angles([1, -1, -1], [0, 60], degrees=True) |
| 99 | +x_axis_points = r90x * Vector3d.xvector() |
| 100 | +y_axis_points = r90x * Vector3d.yvector() |
| 101 | +z_axis_points = r90x * Vector3d.zvector() |
| 102 | + |
| 103 | +x_axis_path = Vector3d.from_path_ends(x_axis_points.unique()) |
| 104 | +y_axis_path = Vector3d.from_path_ends(y_axis_points.unique()) |
| 105 | +z_axis_path = Vector3d.from_path_ends(z_axis_points.unique()) |
| 106 | +cx = cm.Reds(np.linspace(0.1, 1, x_axis_path.size)) |
| 107 | +cy = cm.Greens(np.linspace(0.1, 1, y_axis_path.size)) |
| 108 | +cz = cm.Blues(np.linspace(0.1, 1, z_axis_path.size)) |
| 109 | + |
| 110 | +spx = ax_upper.scatter(x_axis_path, figure=fig, marker=">", c=cx, label="X") |
| 111 | +spy = ax_upper.scatter(y_axis_path, figure=fig, marker=">", c=cy, label="Y") |
| 112 | +spz = ax_upper.scatter(z_axis_path, figure=fig, marker=">", c=cz, label="Z") |
| 113 | +ax_upper.legend(loc="lower center", ncols=3) |
| 114 | + |
| 115 | +plt.tight_layout() |
0 commit comments