๐ค Cyber Neural Network Visualization & ๐ง Transformers Neural Network โ Interactive Visualizer
Dual-mode interactive tool for visualizing artificial neural networks and Transformer architectures, illustrating complex machine learning concepts through real-time visual representations
This project is currently in active development, featuring two distinct but complementary visualization systems:
- ๐ค Cyber Neural Network: Abstract network visualization with interactive node systems
- ๐ง Transformers Neural Network: Real Transformer architecture with live training
Live Demo: Transformers Interactive Visualizer
An abstract, artistic representation of neural network principles featuring:
- Dual-mode rendering (Cyber/Tech vs Complex aesthetic modes)
- Interactive physics engine with node repulsion and force calculations
- Real-time performance optimization with spatial partitioning algorithms
- Advanced visual effects including multi-layer glow and gradient connections
Explore: Cyber Neural Network
Methodology: Calculation Details
A fully functional Transformer architecture implementation featuring:
- Real-time training with TensorFlow.js in the browser
- Dual architecture modes (GPT-style decoder-only vs T5-style encoder-decoder)
- Multi-head attention visualization with color-coded attention heads
- Animated forward/backward propagation with gradient flow visualization
- Live embeddings projection in 2D space
Explore: Transformers Visualizer
Methodology: Calculation Details
- Graph theory and network topology principles
- Force-directed layout algorithms
- Visual hierarchy and information coding
- Interactive physics simulations
- Performance optimization techniques
- Real Transformer architecture mathematics
- Attention mechanism implementations
- Backpropagation and gradient descent
- Multi-head attention patterns
- Encoder-decoder vs decoder-only architectures
- Poisson Disc Sampling for optimal node distribution
- Distance-based probabilistic linking algorithms
- Performance-optimized rendering with adaptive quality scaling
- Multi-layer visual effects with radial gradients and glow simulations
- TensorFlow.js powered real neural networks
- Scaled dot-product attention with multi-head processing
- Positional encoding using trigonometric functions
- Real-time training loops with gradient visualization
- Secure, copy-protected execution environment
- Modern web browser with WebGL 2.0+ support
- JavaScript enabled
- Recommended: 1920ร1080 resolution or higher
Both visualizers run directly in your web browser:
- Cyber Neural Network: Interactive abstract network exploration
- Transformers Visualizer: Real Transformer architecture with live training
- Toggle between Cyber (performance) and Complex (aesthetic) modes
- Click and drag to interact with nodes using physics-based repulsion
- Observe real-time connection patterns and network behavior
- Experience smooth 60 FPS rendering with advanced visual effects
- Click "Train" to watch real-time model training and loss reduction
- Use "Forward" to see data flow through Transformer layers
- Click "Backward" to observe gradient propagation during backpropagation
- Switch between GPT and T5 architecture modes
- Click any token to inspect attention weights and gradient influences
- Dual-system architecture implementation
- Real-time rendering engines
- Interactive user interfaces
- Responsive design systems
- Advanced training visualization for Transformers
- WebGL acceleration for Cyber Neural Network
- Additional network architectures
- Export and sharing capabilities
- Custom dataset support
- Pre-trained model demonstrations
- Collaborative visualization features
- Extended educational content
Both systems employ distinct visual languages:
- Cyber Neural Network: Cyberpunk aesthetic with neon colors and motion trails
- Transformers Visualizer: Technical visualization with attention heatmaps and gradient flows
Each maintains performance-optimized rendering while providing engaging, educational experiences.
For detailed mathematical foundations and implementation methodologies:
This educational project welcomes suggestions and feedback. Both systems are designed to make complex machine learning concepts accessible through interactive visualization.
This project is licensed under the terms included in the LICENSE file.
For questions regarding either visualization system:
- Visit the main project page: Transformers Interactive Visualizer
- Explore the GitHub repository for detailed documentation
- Review methodology documents for technical implementation details
Copyright ยฉ 2025 Gerivan Costa dos Santos
Transformers Interactive Neural Network Visualizer ยฉ 2025
Dual-system architecture: Cyber Neural Network & Transformers Visualizer