Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/transformers/models/dbrx/modeling_dbrx.py
Original file line number Diff line number Diff line change
Expand Up @@ -357,7 +357,7 @@ def __init__(self, config, **kwargs):
self.top_k = config.ffn_config.moe_top_k

def route_tokens_to_experts(self, router_logits):
router_logits = torch.nn.functional.softmax(router_logits, dim=1, dtype=router_logits.dtype)
router_logits = torch.nn.functional.softmax(router_logits, dim=-1, dtype=router_logits.dtype)
router_top_value, router_indices = torch.topk(router_logits, self.top_k, dim=-1)
if self.moe_normalize_expert_weights is not None:
router_top_value = router_top_value / torch.norm(
Expand Down
2 changes: 1 addition & 1 deletion src/transformers/models/dbrx/modular_dbrx.py
Original file line number Diff line number Diff line change
Expand Up @@ -227,7 +227,7 @@ def __init__(self, config, **kwargs):
self.top_k = config.ffn_config.moe_top_k

def route_tokens_to_experts(self, router_logits):
router_logits = torch.nn.functional.softmax(router_logits, dim=1, dtype=router_logits.dtype)
router_logits = torch.nn.functional.softmax(router_logits, dim=-1, dtype=router_logits.dtype)
router_top_value, router_indices = torch.topk(router_logits, self.top_k, dim=-1)
if self.moe_normalize_expert_weights is not None:
router_top_value = router_top_value / torch.norm(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -362,7 +362,7 @@ def route_tokens_to_experts(self, hidden_states):

with torch.autocast(device_type=device_type, enabled=False): # Force float32
router_logits = self.gate(hidden_states.float())
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
routing_weights = F.softmax(router_logits, dim=-1, dtype=torch.float)
_, selected_experts = torch.topk(self.moe_statics(routing_weights), self.top_k, dim=-1)
routing_weights = torch.gather(routing_weights, dim=-1, index=selected_experts)
routing_weights = routing_weights / torch.clamp(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -143,7 +143,7 @@ def route_tokens_to_experts(self, hidden_states):

with torch.autocast(device_type=device_type, enabled=False): # Force float32
router_logits = self.gate(hidden_states.float())
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
routing_weights = F.softmax(router_logits, dim=-1, dtype=torch.float)
_, selected_experts = torch.topk(self.moe_statics(routing_weights), self.top_k, dim=-1)
routing_weights = torch.gather(routing_weights, dim=-1, index=selected_experts)
routing_weights = routing_weights / torch.clamp(
Expand Down
6 changes: 3 additions & 3 deletions src/transformers/models/flex_olmo/modeling_flex_olmo.py
Original file line number Diff line number Diff line change
Expand Up @@ -336,19 +336,19 @@ def __init__(self, config):
self.gate = nn.Linear(config.hidden_size, self.num_experts, bias=False)
self.experts = FlexOlmoExperts(config)

def route_tokens_to_experts(self, hidden_states, router_logits):
def route_tokens_to_experts(self, router_logits):
routing_weights = torch.nn.functional.softmax(router_logits.float(), dim=-1)
top_k_weights, top_k_index = torch.topk(routing_weights, self.top_k, dim=-1)
if self.norm_topk_prob:
top_k_weights /= top_k_weights.sum(dim=-1, keepdim=True)
top_k_weights = top_k_weights.to(hidden_states.dtype)
top_k_weights = top_k_weights.to(router_logits.dtype)
return top_k_index, top_k_weights

def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_dim)
router_logits = self.gate(hidden_states)
top_k_index, top_k_weights = self.route_tokens_to_experts(hidden_states, router_logits)
top_k_index, top_k_weights = self.route_tokens_to_experts(router_logits)
final_hidden_states = self.experts(hidden_states, top_k_index, top_k_weights).reshape(
batch_size, sequence_length, hidden_dim
)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -289,11 +289,12 @@ def __init__(self, config: HunYuanMoEV1Config, layer_idx: Optional[int] = None):
self.experts = HunYuanMoEV1Experts(config)
self.shared_mlp = HunYuanMoEV1MLP(config)

def route_tokens_to_experts(self, hidden_states):
routing_weights = F.softmax(hidden_states, dim=1, dtype=torch.float)
def route_tokens_to_experts(self, router_logits):
routing_weights = F.softmax(router_logits, dim=-1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
return selected_experts, routing_weights.to(hidden_states.dtype)
routing_weights = routing_weights.to(router_logits.dtype)
return selected_experts, routing_weights

def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, sequence_length, hidden_dim = hidden_states.shape
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -145,11 +145,12 @@ def __init__(self, config: HunYuanMoEV1Config, layer_idx: Optional[int] = None):
self.experts = HunYuanMoEV1Experts(config)
self.shared_mlp = HunYuanMoEV1MLP(config)

def route_tokens_to_experts(self, hidden_states):
routing_weights = F.softmax(hidden_states, dim=1, dtype=torch.float)
def route_tokens_to_experts(self, router_logits):
routing_weights = F.softmax(router_logits, dim=-1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
return selected_experts, routing_weights.to(hidden_states.dtype)
routing_weights = routing_weights.to(router_logits.dtype)
return selected_experts, routing_weights

def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, sequence_length, hidden_dim = hidden_states.shape
Expand Down
6 changes: 3 additions & 3 deletions src/transformers/models/jamba/modeling_jamba.py
Original file line number Diff line number Diff line change
Expand Up @@ -614,16 +614,16 @@ def __init__(self, config: JambaConfig):
self.router = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
self.experts = JambaExperts(config)

def route_tokens_to_experts(self, hidden_states, router_logits):
def route_tokens_to_experts(self, router_logits):
routing_weights = torch.nn.functional.softmax(router_logits, dim=-1, dtype=torch.float)
top_k_weights, top_k_index = torch.topk(routing_weights, self.top_k, dim=-1)
return top_k_index, top_k_weights.to(hidden_states.dtype)
return top_k_index, top_k_weights.to(router_logits.dtype)

def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_dim)
router_logits = self.router(hidden_states)
top_k_index, top_k_weights = self.route_tokens_to_experts(hidden_states, router_logits)
top_k_index, top_k_weights = self.route_tokens_to_experts(router_logits)
hidden_states = self.experts(hidden_states, top_k_index, top_k_weights)
hidden_states = hidden_states.reshape(batch_size, sequence_length, hidden_dim)
return hidden_states
Expand Down
6 changes: 3 additions & 3 deletions src/transformers/models/jamba/modular_jamba.py
Original file line number Diff line number Diff line change
Expand Up @@ -501,16 +501,16 @@ def __init__(self, config: JambaConfig):
self.router = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
self.experts = JambaExperts(config)

def route_tokens_to_experts(self, hidden_states, router_logits):
def route_tokens_to_experts(self, router_logits):
routing_weights = torch.nn.functional.softmax(router_logits, dim=-1, dtype=torch.float)
top_k_weights, top_k_index = torch.topk(routing_weights, self.top_k, dim=-1)
return top_k_index, top_k_weights.to(hidden_states.dtype)
return top_k_index, top_k_weights.to(router_logits.dtype)

def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_dim)
router_logits = self.router(hidden_states)
top_k_index, top_k_weights = self.route_tokens_to_experts(hidden_states, router_logits)
top_k_index, top_k_weights = self.route_tokens_to_experts(router_logits)
hidden_states = self.experts(hidden_states, top_k_index, top_k_weights)
hidden_states = hidden_states.reshape(batch_size, sequence_length, hidden_dim)
return hidden_states
Expand Down
6 changes: 3 additions & 3 deletions src/transformers/models/olmoe/modeling_olmoe.py
Original file line number Diff line number Diff line change
Expand Up @@ -339,19 +339,19 @@ def __init__(self, config):
self.gate = nn.Linear(config.hidden_size, self.num_experts, bias=False)
self.experts = OlmoeExperts(config)

def route_tokens_to_experts(self, hidden_states, router_logits):
def route_tokens_to_experts(self, router_logits):
routing_weights = torch.nn.functional.softmax(router_logits.float(), dim=-1)
top_k_weights, top_k_index = torch.topk(routing_weights, self.top_k, dim=-1)
if self.norm_topk_prob:
top_k_weights /= top_k_weights.sum(dim=-1, keepdim=True)
top_k_weights = top_k_weights.to(hidden_states.dtype)
top_k_weights = top_k_weights.to(router_logits.dtype)
return top_k_index, top_k_weights

def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_dim)
router_logits = self.gate(hidden_states)
top_k_index, top_k_weights = self.route_tokens_to_experts(hidden_states, router_logits)
top_k_index, top_k_weights = self.route_tokens_to_experts(router_logits)
final_hidden_states = self.experts(hidden_states, top_k_index, top_k_weights).reshape(
batch_size, sequence_length, hidden_dim
)
Expand Down
6 changes: 3 additions & 3 deletions src/transformers/models/olmoe/modular_olmoe.py
Original file line number Diff line number Diff line change
Expand Up @@ -134,19 +134,19 @@ def __init__(self, config):
self.gate = nn.Linear(config.hidden_size, self.num_experts, bias=False)
self.experts = OlmoeExperts(config)

def route_tokens_to_experts(self, hidden_states, router_logits):
def route_tokens_to_experts(self, router_logits):
routing_weights = torch.nn.functional.softmax(router_logits.float(), dim=-1)
top_k_weights, top_k_index = torch.topk(routing_weights, self.top_k, dim=-1)
if self.norm_topk_prob:
top_k_weights /= top_k_weights.sum(dim=-1, keepdim=True)
top_k_weights = top_k_weights.to(hidden_states.dtype)
top_k_weights = top_k_weights.to(router_logits.dtype)
return top_k_index, top_k_weights

def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_dim)
router_logits = self.gate(hidden_states)
top_k_index, top_k_weights = self.route_tokens_to_experts(hidden_states, router_logits)
top_k_index, top_k_weights = self.route_tokens_to_experts(router_logits)
final_hidden_states = self.experts(hidden_states, top_k_index, top_k_weights).reshape(
batch_size, sequence_length, hidden_dim
)
Expand Down
6 changes: 3 additions & 3 deletions src/transformers/models/qwen2_moe/modeling_qwen2_moe.py
Original file line number Diff line number Diff line change
Expand Up @@ -335,20 +335,20 @@ def __init__(self, config):
self.shared_expert = Qwen2MoeMLP(config, intermediate_size=config.shared_expert_intermediate_size)
self.shared_expert_gate = torch.nn.Linear(config.hidden_size, 1, bias=False)

def route_tokens_to_experts(self, hidden_states, router_logits):
def route_tokens_to_experts(self, router_logits):
routing_weights = F.softmax(router_logits, dim=-1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights, self.num_experts_per_tok, dim=-1)
if self.norm_topk_prob:
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
routing_weights = routing_weights.to(router_logits.dtype)
return selected_experts, routing_weights

def forward(self, hidden_states: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states_reshaped = hidden_states.view(-1, hidden_dim)
shared_expert_output = self.shared_expert(hidden_states_reshaped)
router_logits = self.gate(hidden_states_reshaped)
selected_experts, routing_weights = self.route_tokens_to_experts(hidden_states_reshaped, router_logits)
selected_experts, routing_weights = self.route_tokens_to_experts(router_logits)
expert_output = self.experts(hidden_states_reshaped, selected_experts, routing_weights)

shared_expert_output = F.sigmoid(self.shared_expert_gate(hidden_states_reshaped)) * shared_expert_output
Expand Down
6 changes: 3 additions & 3 deletions src/transformers/models/qwen2_moe/modular_qwen2_moe.py
Original file line number Diff line number Diff line change
Expand Up @@ -102,20 +102,20 @@ def __init__(self, config):
self.shared_expert = Qwen2MoeMLP(config, intermediate_size=config.shared_expert_intermediate_size)
self.shared_expert_gate = torch.nn.Linear(config.hidden_size, 1, bias=False)

def route_tokens_to_experts(self, hidden_states, router_logits):
def route_tokens_to_experts(self, router_logits):
routing_weights = F.softmax(router_logits, dim=-1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights, self.num_experts_per_tok, dim=-1)
if self.norm_topk_prob:
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
routing_weights = routing_weights.to(router_logits.dtype)
return selected_experts, routing_weights

def forward(self, hidden_states: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states_reshaped = hidden_states.view(-1, hidden_dim)
shared_expert_output = self.shared_expert(hidden_states_reshaped)
router_logits = self.gate(hidden_states_reshaped)
selected_experts, routing_weights = self.route_tokens_to_experts(hidden_states_reshaped, router_logits)
selected_experts, routing_weights = self.route_tokens_to_experts(router_logits)
expert_output = self.experts(hidden_states_reshaped, selected_experts, routing_weights)

shared_expert_output = F.sigmoid(self.shared_expert_gate(hidden_states_reshaped)) * shared_expert_output
Expand Down
6 changes: 3 additions & 3 deletions src/transformers/models/qwen3_moe/modeling_qwen3_moe.py
Original file line number Diff line number Diff line change
Expand Up @@ -251,19 +251,19 @@ def __init__(self, config: Qwen3MoeConfig):
self.num_experts_per_tok = config.num_experts_per_tok
self.norm_topk_prob = config.norm_topk_prob

def route_tokens_to_experts(self, hidden_states, router_logits):
def route_tokens_to_experts(self, router_logits):
routing_weights = F.softmax(router_logits, dim=-1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights, self.num_experts_per_tok, dim=-1)
if self.norm_topk_prob:
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
routing_weights = routing_weights.to(router_logits.dtype)
return selected_experts, routing_weights

def forward(self, hidden_states: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states_reshaped = hidden_states.view(-1, hidden_dim)
router_logits = self.gate(hidden_states_reshaped)
selected_experts, routing_weights = self.route_tokens_to_experts(hidden_states_reshaped, router_logits)
selected_experts, routing_weights = self.route_tokens_to_experts(router_logits)
final_hidden_states = self.experts(hidden_states_reshaped, selected_experts, routing_weights)
return final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)

Expand Down
6 changes: 3 additions & 3 deletions src/transformers/models/qwen3_moe/modular_qwen3_moe.py
Original file line number Diff line number Diff line change
Expand Up @@ -73,19 +73,19 @@ def __init__(self, config: Qwen3MoeConfig):
self.num_experts_per_tok = config.num_experts_per_tok
self.norm_topk_prob = config.norm_topk_prob

def route_tokens_to_experts(self, hidden_states, router_logits):
def route_tokens_to_experts(self, router_logits):
routing_weights = F.softmax(router_logits, dim=-1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights, self.num_experts_per_tok, dim=-1)
if self.norm_topk_prob:
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
routing_weights = routing_weights.to(router_logits.dtype)
return selected_experts, routing_weights

def forward(self, hidden_states: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states_reshaped = hidden_states.view(-1, hidden_dim)
router_logits = self.gate(hidden_states_reshaped)
selected_experts, routing_weights = self.route_tokens_to_experts(hidden_states_reshaped, router_logits)
selected_experts, routing_weights = self.route_tokens_to_experts(router_logits)
final_hidden_states = self.experts(hidden_states_reshaped, selected_experts, routing_weights)
return final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)

Expand Down
6 changes: 3 additions & 3 deletions src/transformers/models/qwen3_next/modeling_qwen3_next.py
Original file line number Diff line number Diff line change
Expand Up @@ -865,20 +865,20 @@ def __init__(self, config):
self.shared_expert = Qwen3NextMLP(config, intermediate_size=config.shared_expert_intermediate_size)
self.shared_expert_gate = torch.nn.Linear(config.hidden_size, 1, bias=False)

def route_tokens_to_experts(self, hidden_states, router_logits):
def route_tokens_to_experts(self, router_logits):
routing_weights = F.softmax(router_logits, dim=-1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights, self.num_experts_per_tok, dim=-1)
if self.norm_topk_prob:
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
routing_weights = routing_weights.to(router_logits.dtype)
return selected_experts, routing_weights

def forward(self, hidden_states: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states_reshaped = hidden_states.view(-1, hidden_dim)
shared_expert_output = self.shared_expert(hidden_states_reshaped)
router_logits = self.gate(hidden_states_reshaped)
selected_experts, routing_weights = self.route_tokens_to_experts(hidden_states_reshaped, router_logits)
selected_experts, routing_weights = self.route_tokens_to_experts(router_logits)
expert_output = self.experts(hidden_states_reshaped, selected_experts, routing_weights)

shared_expert_output = F.sigmoid(self.shared_expert_gate(hidden_states_reshaped)) * shared_expert_output
Expand Down
Loading