|
| 1 | +import os |
| 2 | +from dataclasses import asdict |
| 3 | +from typing import NamedTuple, Optional |
| 4 | + |
| 5 | +from huggingface_hub import snapshot_download |
| 6 | +from transformers import AutoTokenizer |
| 7 | + |
| 8 | +from vllm import LLM, EngineArgs, SamplingParams |
| 9 | +from ipex_llm.vllm.xpu.engine import IPEXLLMClass as LLM |
| 10 | +from vllm.assets.audio import AudioAsset |
| 11 | +from vllm.utils import FlexibleArgumentParser |
| 12 | + |
| 13 | +audio_assets = [AudioAsset("mary_had_lamb"), AudioAsset("winning_call")] |
| 14 | +question_per_audio_count = { |
| 15 | + 0: "What is 1+1?", |
| 16 | + 1: "What is recited in the audio?", |
| 17 | + 2: "What sport and what nursery rhyme are referenced?" |
| 18 | +} |
| 19 | + |
| 20 | +model_path = "/llm/models/whisper-large-v3-turbo" |
| 21 | +#model_path = "/llm/models/whisper-medium" |
| 22 | +#model_path = "/llm/models/Phi-4-multimodal-instruct" |
| 23 | + |
| 24 | +# Phi-4-multimodal-instruct |
| 25 | +def run_phi4mm(question: str, audio_count: int): |
| 26 | + placeholders = "".join([f"<|audio_{i+1}|>" for i in range(audio_count)]) |
| 27 | + |
| 28 | + prompt = f"<|user|>{placeholders}{question}<|end|><|assistant|>" |
| 29 | + |
| 30 | + return prompt |
| 31 | + |
| 32 | + |
| 33 | +# Whisper |
| 34 | +def run_whisper(question: str, audio_count: int): |
| 35 | + assert audio_count == 1, ( |
| 36 | + "Whisper only support single audio input per prompt") |
| 37 | + |
| 38 | + prompt = "<|startoftranscript|>" |
| 39 | + |
| 40 | + return prompt |
| 41 | + |
| 42 | + |
| 43 | +model_example_map = { |
| 44 | + "phi4mm": run_phi4mm, |
| 45 | + "whisper": run_whisper, |
| 46 | +} |
| 47 | + |
| 48 | + |
| 49 | +if "whisper" in model_path: |
| 50 | + model_len=448 |
| 51 | + low_bit="fp16" |
| 52 | +else: |
| 53 | + model_len = 5500 |
| 54 | + low_bit="sym_int4" |
| 55 | + |
| 56 | +def main(args): |
| 57 | + audio_count = args.num_audios |
| 58 | + |
| 59 | + llm = LLM( |
| 60 | + model=model_path, |
| 61 | + device="xpu", |
| 62 | + dtype="float16", |
| 63 | + limit_mm_per_prompt={"audio": audio_count}, |
| 64 | + enforce_eager=True, |
| 65 | + mm_processor_kwargs=None, |
| 66 | + load_in_low_bit=low_bit, |
| 67 | + tensor_parallel_size=1, |
| 68 | + max_num_seqs=8, |
| 69 | + gpu_memory_utilization=0.95, |
| 70 | + disable_async_output_proc=True, |
| 71 | + distributed_executor_backend="ray", |
| 72 | + max_model_len=model_len, |
| 73 | + trust_remote_code=True, |
| 74 | + block_size=8, |
| 75 | + max_num_batched_tokens=model_len) |
| 76 | + |
| 77 | + model = llm.llm_engine.model_config.hf_config.model_type |
| 78 | + if model not in model_example_map: |
| 79 | + raise ValueError(f"Model type {model} is not supported.") |
| 80 | + |
| 81 | + prompt = model_example_map[model](question_per_audio_count[audio_count], audio_count) |
| 82 | + |
| 83 | + sampling_params = SamplingParams(temperature=0.1, |
| 84 | + top_p=0.001, |
| 85 | + repetition_penalty=1.05, |
| 86 | + max_tokens=128, |
| 87 | + skip_special_tokens=False |
| 88 | + ) |
| 89 | + |
| 90 | + mm_data = {} |
| 91 | + if audio_count > 0: |
| 92 | + mm_data = { |
| 93 | + "audio": [ |
| 94 | + asset.audio_and_sample_rate |
| 95 | + for asset in audio_assets[:audio_count] |
| 96 | + ] |
| 97 | + } |
| 98 | + |
| 99 | + assert args.num_prompts > 0 |
| 100 | + inputs = {"prompt": prompt, "multi_modal_data": mm_data} |
| 101 | + if args.num_prompts > 1: |
| 102 | + # Batch inference |
| 103 | + inputs = [inputs] * args.num_prompts |
| 104 | + |
| 105 | + outputs = llm.generate(inputs, sampling_params=sampling_params) |
| 106 | + |
| 107 | + for o in outputs: |
| 108 | + generated_text = o.outputs[0].text |
| 109 | + print(generated_text) |
| 110 | + |
| 111 | + |
| 112 | +if __name__ == "__main__": |
| 113 | + parser = FlexibleArgumentParser( |
| 114 | + description='Demo on using vLLM for offline inference with ' |
| 115 | + 'audio language models') |
| 116 | + parser.add_argument('--num-prompts', |
| 117 | + type=int, |
| 118 | + default=1, |
| 119 | + help='Number of prompts to run.') |
| 120 | + parser.add_argument("--num-audios", |
| 121 | + type=int, |
| 122 | + default=1, |
| 123 | + choices=[0, 1, 2], |
| 124 | + help="Number of audio items per prompt.") |
| 125 | + parser.add_argument("--seed", |
| 126 | + type=int, |
| 127 | + default=None, |
| 128 | + help="Set the seed when initializing `vllm.LLM`.") |
| 129 | + |
| 130 | + args = parser.parse_args() |
| 131 | + main(args) |
0 commit comments