@@ -11,93 +11,14 @@ options:
1111-m FNAME, --model FNAME [models/ggml-base.en.bin] model path
1212-di, --diarize [false ] stereo audio diarization
1313```
14- ## service
14+ ## whisper_http_server_base_httplib
1515
16- Simple http service. WAV Files are passed to the inference model via http requests.
16+ Simple http service. WAV mp4 and m4a Files are passed to the inference model via http requests.
1717
1818```
19- ./cmake-build-debug/service -m models/ggml-base.en.bin
20- ```
21-
22- ``` shell
23- whisper_init_from_file_with_params_no_state: loading model from ' models/ggml-base.en.bin'
24- whisper_model_load: loading model
25- whisper_model_load: n_vocab = 51864
26- whisper_model_load: n_audio_ctx = 1500
27- whisper_model_load: n_audio_state = 512
28- whisper_model_load: n_audio_head = 8
29- whisper_model_load: n_audio_layer = 6
30- whisper_model_load: n_text_ctx = 448
31- whisper_model_load: n_text_state = 512
32- whisper_model_load: n_text_head = 8
33- whisper_model_load: n_text_layer = 6
34- whisper_model_load: n_mels = 80
35- whisper_model_load: ftype = 1
36- whisper_model_load: qntvr = 0
37- whisper_model_load: type = 2 (base)
38- whisper_model_load: adding 1607 extra tokens
39- whisper_model_load: n_langs = 99
40- whisper_backend_init: using Metal backend
41- ggml_metal_init: allocating
42- ggml_metal_init: found device: Apple M2
43- ggml_metal_init: picking default device: Apple M2
44- ggml_metal_init: default.metallib not found, loading from source
45- ggml_metal_init: error: could not use bundle path to find ggml-metal.metal, falling back to trying cwd
46- ggml_metal_init: loading ' ggml-metal.metal'
47- ggml_metal_init: GPU name: Apple M2
48- ggml_metal_init: GPU family: MTLGPUFamilyApple8 (1008)
49- ggml_metal_init: hasUnifiedMemory = true
50- ggml_metal_init: recommendedMaxWorkingSetSize = 11453.25 MB
51- ggml_metal_init: maxTransferRate = built-in GPU
52- ggml_metal_add_buffer: allocated ' backend ' buffer, size = 156.68 MB, ( 157.20 / 11453.25)
53- whisper_model_load: Metal buffer size = 156.67 MB
54- whisper_model_load: model size = 156.58 MB
55- whisper_backend_init: using Metal backend
56- ggml_metal_init: allocating
57- ggml_metal_init: found device: Apple M2
58- ggml_metal_init: picking default device: Apple M2
59- ggml_metal_init: default.metallib not found, loading from source
60- ggml_metal_init: error: could not use bundle path to find ggml-metal.metal, falling back to trying cwd
61- ggml_metal_init: loading ' ggml-metal.metal'
62- ggml_metal_init: GPU name: Apple M2
63- ggml_metal_init: GPU family: MTLGPUFamilyApple8 (1008)
64- ggml_metal_init: hasUnifiedMemory = true
65- ggml_metal_init: recommendedMaxWorkingSetSize = 11453.25 MB
66- ggml_metal_init: maxTransferRate = built-in GPU
67- ggml_metal_add_buffer: allocated ' backend ' buffer, size = 16.52 MB, ( 173.72 / 11453.25)
68- whisper_init_state: kv self size = 16.52 MB
69- ggml_metal_add_buffer: allocated ' backend ' buffer, size = 18.43 MB, ( 192.15 / 11453.25)
70- whisper_init_state: kv cross size = 18.43 MB
71- whisper_init_state: loading Core ML model from ' models/ggml-base.en-encoder.mlmodelc'
72- whisper_init_state: first run on a device may take a while ...
73- whisper_init_state: Core ML model loaded
74- ggml_metal_add_buffer: allocated ' backend ' buffer, size = 0.02 MB, ( 196.51 / 11453.25)
75- whisper_init_state: compute buffer (conv) = 5.67 MB
76- ggml_metal_add_buffer: allocated ' backend ' buffer, size = 0.02 MB, ( 196.53 / 11453.25)
77- whisper_init_state: compute buffer (cross) = 4.71 MB
78- ggml_metal_add_buffer: allocated ' backend ' buffer, size = 0.02 MB, ( 196.54 / 11453.25)
79- whisper_init_state: compute buffer (decode) = 96.41 MB
80- ggml_metal_add_buffer: allocated ' backend ' buffer, size = 4.05 MB, ( 200.59 / 11453.25)
81- ggml_metal_add_buffer: allocated ' backend ' buffer, size = 3.08 MB, ( 203.67 / 11453.25)
82- ggml_metal_add_buffer: allocated ' backend ' buffer, size = 94.78 MB, ( 298.45 / 11453.25)
83-
84- whisper service listening at http://0.0.0.0:8080
85-
86- Received request: jfk.wav
87- Successfully loaded jfk.wav
88-
89- system_info: n_threads = 4 / 8 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | METAL = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 | CUDA = 0 | COREML = 1 | OPENVINO = 0 |
90-
91- handleInference: processing ' jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
92-
93- Running whisper.cpp inference on jfk.wav
94-
95- [00:00:00.000 --> 00:00:11.000] And so my fellow Americans, ask not what your country can do for you, ask what you can do for your country.
96- ` ` `
97- ` ` `
98- ./service -h
19+ ./whisper_http_server_base_httplib -h
9920
100- usage: ./bin/service [options]
21+ usage: ./bin/whisper_http_server_base_httplib [options]
10122
10223options:
10324 -h, --help [default] show this help message and exit
@@ -131,7 +52,12 @@ options:
13152 --host HOST, [127.0.0.1] Hostname/ip-adress for the service
13253 --port PORT, [8080 ] Port number for the service
13354```
134-
55+ ## start whisper_http_server_base_httplib
56+ ```
57+ ./cmake-build-debug/whisper_http_server_base_httplib -m models/ggml-base.en.bin
58+ ```
59+ Test server
60+ see request doc in [ doc] ( doc )
13561## request examples
13662
13763** /inference**
@@ -140,11 +66,21 @@ curl --location --request POST http://127.0.0.1:8080/inference \
14066--form file=@"./samples/jfk.wav" \
14167--form temperature="0.2" \
14268--form response-format="json"
69+ --form audio_format="wav"
14370```
14471
14572** /load**
14673```
14774curl 127.0.0.1:8080/load \
14875-H "Content-Type: multipart/form-data" \
14976-F model="<path-to-model-file>"
150- ` ` `
77+ ```
78+
79+ ## whisper_server_base_on_uwebsockets
80+ web socket server
81+ start server
82+ ```
83+ ./cmake-build-debug/whisper_server_base_on_uwebsockets -m models/ggml-base.en.bin
84+ ```
85+ Test server
86+ see python [ client] ( client )
0 commit comments