|
| 1 | +# MLPerf Inference reference implementation for DLRMv3 |
| 2 | + |
| 3 | +## Install dependencies and build loadgen |
| 4 | + |
| 5 | +The reference implementation has been tested on a single host, with x86_64 CPUs and 8 NVIDIA H100/B200 GPUs. Dependencies can be installed below, |
| 6 | +``` |
| 7 | +sh setup.sh |
| 8 | +``` |
| 9 | + |
| 10 | +## Dataset download |
| 11 | + |
| 12 | +DLRMv3 uses a synthetic dataset specifically designed to match the model and system characteristics of large-scale sequential recommendation (large item set and long average sequence length for each request). To generate the dataset used for both training and inference, run |
| 13 | +``` |
| 14 | +python streaming_synthetic_data.py |
| 15 | +``` |
| 16 | +The generated dataset has 2TB size, and contains 5 million users interacting with a billion items over 100 timestamps. |
| 17 | + |
| 18 | +Only 1% of the dataset is used in the inference benchmark. The sampled DLRMv3 dataset and trained checkpoint are available at https://inference.mlcommons-storage.org/. |
| 19 | + |
| 20 | +Script to download the sampled dataset used in inference benchmark: |
| 21 | +``` |
| 22 | +bash <(curl -s https://raw.githubusercontent.com/mlcommons/r2-downloader/refs/heads/main/mlc-r2-downloader.sh) https://inference.mlcommons-storage.org/metadata/dlrm-v3-dataset.uri |
| 23 | +``` |
| 24 | +Script to download the 1TB trained checkpoint: |
| 25 | +``` |
| 26 | +bash <(curl -s https://raw.githubusercontent.com/mlcommons/r2-downloader/refs/heads/main/mlc-r2-downloader.sh) https://inference.mlcommons-storage.org/metadata/dlrm-v3-checkpoint.uri |
| 27 | +``` |
| 28 | + |
| 29 | +## Inference benchmark |
| 30 | + |
| 31 | +``` |
| 32 | +WORLD_SIZE=8 python main.py --dataset sampled-streaming-100b |
| 33 | +``` |
| 34 | + |
| 35 | +`WORLD_SIZE` is the number of GPUs used in the inference benchmark. |
| 36 | + |
| 37 | +``` |
| 38 | +usage: main.py [-h] [--dataset {streaming-100b,sampled-streaming-100b}] [--model-path MODEL_PATH] [--scenario-name {Server,Offline}] [--batchsize BATCHSIZE] |
| 39 | + [--output-trace OUTPUT_TRACE] [--data-producer-threads DATA_PRODUCER_THREADS] [--compute-eval COMPUTE_EVAL] [--find-peak-performance FIND_PEAK_PERFORMANCE] |
| 40 | + [--dataset-path-prefix DATASET_PATH_PREFIX] [--warmup-ratio WARMUP_RATIO] [--num-queries NUM_QUERIES] [--target-qps TARGET_QPS] [--numpy-rand-seed NUMPY_RAND_SEED] |
| 41 | + [--sparse-quant SPARSE_QUANT] [--dataset-percentage DATASET_PERCENTAGE] |
| 42 | +
|
| 43 | +options: |
| 44 | + -h, --help show this help message and exit |
| 45 | + --dataset {streaming-100b,sampled-streaming-100b} |
| 46 | + name of the dataset |
| 47 | + --model-path MODEL_PATH |
| 48 | + path to the model checkpoint. Example: /home/username/ckpts/streaming_100b/89/ |
| 49 | + --scenario-name {Server,Offline} |
| 50 | + inference benchmark scenario |
| 51 | + --batchsize BATCHSIZE |
| 52 | + batch size used in the benchmark |
| 53 | + --output-trace OUTPUT_TRACE |
| 54 | + Whether to output trace |
| 55 | + --data-producer-threads DATA_PRODUCER_THREADS |
| 56 | + Number of threads used in data producer |
| 57 | + --compute-eval COMPUTE_EVAL |
| 58 | + If true, will run AccuracyOnly mode and outputs both predictions and labels for accuracy calcuations |
| 59 | + --find-peak-performance FIND_PEAK_PERFORMANCE |
| 60 | + Whether to find peak performance in the benchmark |
| 61 | + --dataset-path-prefix DATASET_PATH_PREFIX |
| 62 | + Prefix to the dataset path. Example: /home/username/ |
| 63 | + --warmup-ratio WARMUP_RATIO |
| 64 | + The ratio of the dataset used to warmup SUT |
| 65 | + --num-queries NUM_QUERIES |
| 66 | + Number of queries to run in the benchmark |
| 67 | + --target-qps TARGET_QPS |
| 68 | + Benchmark target QPS. Needs to be tuned for different implementations to balance latency and throughput |
| 69 | + --numpy-rand-seed NUMPY_RAND_SEED |
| 70 | + Numpy random seed |
| 71 | + --sparse-quant SPARSE_QUANT |
| 72 | + Whether to quantize sparse arch |
| 73 | + --dataset-percentage DATASET_PERCENTAGE |
| 74 | + Percentage of the dataset to run in the benchmark |
| 75 | +``` |
| 76 | + |
| 77 | +## Accuracy test |
| 78 | + |
| 79 | +Set `run.compute_eval` will run the accuracy test and dump prediction outputs in |
| 80 | +`mlperf_log_accuracy.json`. To check the accuracy, run |
| 81 | + |
| 82 | +``` |
| 83 | +python accuracy.py --path path/to/mlperf_log_accuracy.json |
| 84 | +``` |
| 85 | +We use normalized entropy (NE), accuracy, and AUC as the metrics to evaluate the model quality. The accuracy for the reference implementation evaluated on 34,996 requests across 10 inference timestamps are listed below: |
| 86 | +``` |
| 87 | +NE: 86.687% |
| 88 | +Accuracy: 69.651% |
| 89 | +AUC: 78.663% |
| 90 | +``` |
0 commit comments