-
-
Notifications
You must be signed in to change notification settings - Fork 19.3k
Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
>>> import pandas as pd
>>> sorted_index = pd.MultiIndex.from_product([list("ab"), list("cdef")])
>>> unsorted_index = pd.MultiIndex.from_product([list("ab"), list("fdec")])
>>> sorted_labels = ["d", "e"]
>>> unsorted_labels = ["e", "d"]
>>> sorted_s = pd.Series(range(len(sorted_index)), sorted_index)
>>> sorted_s
a c 0
d 1
e 2
f 3
b c 4
d 5
e 6
f 7
dtype: int64
>>> sorted_s.loc[:, sorted_labels]
a d 1
e 2
b d 5
e 6
dtype: int64
>>> sorted_s.loc[:, unsorted_labels]
a e 2
b e 6
a d 1
b d 5
dtype: int64
>>> unsorted_s = pd.Series(range(len(unsorted_index)), unsorted_index)
>>> unsorted_s
a f 0
d 1
e 2
c 3
b f 4
d 5
e 6
c 7
dtype: int64
>>> unsorted_s.loc[:, sorted_labels]
a d 1
b d 5
a e 2
b e 6
dtype: int64
>>> unsorted_s.loc[:, unsorted_labels]
a e 2
b e 6
a d 1
b d 5
dtype: int64Issue Description
When indexing a MultiIndexed DataFrame or Series via .loc[:, [*labels]], the second level "takes precedence" (for lack of a better term) over the first level if the second level of the MultiIndex is unsorted or if the labels are unsorted. This could be considered unexpected behavior because it means the order of the result depends on the order in which unselected labels appear in the index as well as _lexsort_depth. This issue may be related to #31330 and #40978.
The dependency on _lexsort_depth is particularly troubling to me for several reasons. First, it means that the order of the result depends not only on whether the list-indexed level is sorted, but also whether all previous levels are sorted. In the following example, looks_sorted_s looks identical to sorted_index, but the codes of the two labels in the first level are swapped, making it technically unsorted:
>>> looks_sorted_index = pd.MultiIndex(
... [list("ba"), list("cdef")], [[1, 1, 1, 1, 0, 0, 0, 0], [0, 1, 2, 3, 0, 1, 2, 3]]
... )
>>> looks_sorted_s = pd.Series(range(len(looks_sorted_index)), looks_sorted_index)
>>> looks_sorted_s
a c 0
d 1
e 2
f 3
b c 4
d 5
e 6
f 7
dtype: int64
>>> looks_sorted_s.loc[:, sorted_labels]
a d 1
b d 5
a e 2
b e 6
dtype: int64The converse is also true:
>>> looks_unsorted_index = pd.MultiIndex(
... [list("ab"), list("fdec")], [[0, 0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 3, 0, 1, 2, 3]]
... )
>>> looks_unsorted_s = pd.Series(range(len(looks_unsorted_index)), looks_unsorted_index)
>>> looks_unsorted_s
a f 0
d 1
e 2
c 3
b f 4
d 5
e 6
c 7
dtype: int64
>>> looks_unsorted_s.loc[:, sorted_labels]
a d 1
e 2
b d 5
e 6
dtype: int64...which brings me to how I discovered the issue. The documentation suggests to me that the labels, rather than the codes, must be lexicographically sorted in all levels up to sortlevel. Functions like pd.MultiIndex.from_arrays impose this requirement:
>>> pd.MultiIndex.from_product([list("ab"), list("fdec")], sortorder=2)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "~/.venv/lib/python3.12/site-packages/pandas/core/indexes/multi.py", line 686, in from_product
return cls(levels, codes, sortorder=sortorder, names=names)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "~/.venv/lib/python3.12/site-packages/pandas/core/indexes/multi.py", line 365, in __new__
new_codes = result._verify_integrity()
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "~/.venv/lib/python3.12/site-packages/pandas/core/indexes/multi.py", line 459, in _verify_integrity
raise ValueError(
ValueError: Value for sortorder must be inferior or equal to actual lexsort_depth: sortorder 2 with lexsort_depth 1...but various other functions do not:
>>> idx = pd.IndexSlice
>>> unsorted_index = pd.MultiIndex.from_product([list("ab"), list("dc")])
>>> unsorted_df = pd.DataFrame({"f": range(4), "e": range(4, 8)}, unsorted_index)
>>> unsorted_df
f e
a d 0 4
c 1 5
b d 2 6
c 3 7
>>> unsorted_df.index._lexsort_depth
1
>>> unsorted_df.loc[idx[:, ["d", "c"]],]
f e
a d 0 4
b d 2 6
a c 1 5
b c 3 7
>>> sorted_df = unsorted_df.stack(future_stack=True).unstack(0)
>>> sorted_df
a b
c f 1 3
e 5 7
d f 0 2
e 4 6
>>> sorted_df.index._lexsort_depth
2
>>> sorted_df.loc[idx[:, ["f", "e"]],]
a b
c f 1 3
e 5 7
d f 0 2
e 4 6Note: I'm not sure if this is an issue yet, but while stack (regardless of the value of future_stack) uses the same codes as self, unstack does not. Furthermore, unstack uses the order of first appearance rather than lexicographic order. I will dig into this later this week.
Expected Behavior
>>> import pandas as pd
>>> sorted_index = pd.MultiIndex.from_product([list("ab"), list("cdef")])
>>> unsorted_index = pd.MultiIndex.from_product([list("ab"), list("fdec")])
>>> sorted_labels = ["d", "e"]
>>> unsorted_labels = ["e", "d"]
>>> sorted_s = pd.Series(range(len(sorted_index)), sorted_index)
>>> sorted_s
a c 0
d 1
e 2
f 3
b c 4
d 5
e 6
f 7
dtype: int64
>>> sorted_s.loc[:, sorted_labels]
a d 1
e 2
b d 5
e 6
dtype: int64
>>> sorted_s.loc[:, unsorted_labels]
a e 2
d 1
b e 6
d 5
dtype: int64
>>> unsorted_s = pd.Series(range(len(unsorted_index)), unsorted_index)
>>> unsorted_s
a f 0
d 1
e 2
c 3
b f 4
d 5
e 6
c 7
dtype: int64
>>> unsorted_s.loc[:, sorted_labels]
a d 1
e 2
b d 5
e 6
dtype: int64
>>> unsorted_s.loc[:, unsorted_labels]
a e 2
d 1
b e 6
d 5
dtype: int64Installed Versions
INSTALLED VERSIONS
commit : 9c8bc3e
python : 3.12.3
python-bits : 64
OS : Linux
OS-release : 5.15.167.4-microsoft-standard-WSL2
Version : #1 SMP Tue Nov 5 00:21:55 UTC 2024
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : C.UTF-8
LOCALE : C.UTF-8
pandas : 2.3.3
numpy : 2.3.5
pytz : 2025.2
dateutil : 2.9.0.post0
pip : 25.3
Cython : None
sphinx : None
IPython : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : None
blosc : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : None
html5lib : None
hypothesis : None
gcsfs : None
jinja2 : None
lxml.etree : None
matplotlib : 3.10.7
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
psycopg2 : None
pymysql : None
pyarrow : None
pyreadstat : None
pytest : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlsxwriter : None
zstandard : None
tzdata : 2025.2
qtpy : None
pyqt5 : None