@@ -24,7 +24,7 @@ diode model equation.
2424
2525.. math ::
2626
27- I = I_L - I_0 \left (\exp \left (\frac {V + I R_s}{n Ns V_{th}} \right ) - 1 \right )
27+ I = I_L - I_0 \left (\exp \left (\frac {V + I R_s}{n N_s V_{th}} \right ) - 1 \right )
2828 - \frac {V + I R_s}{R_{sh}}
2929
3030 Lambert W-function is the inverse of the function
@@ -36,8 +36,8 @@ a form that can be expressed as a Lambert W-function.
3636
3737.. math ::
3838
39- z = \frac {R_s I_0 }{n Ns V_{th} \left (1 + \frac {R_s}{R_{sh}} \right )} \exp \left (
40- \frac {R_s \left ( I_L + I_0 \right ) + V}{n Ns V_{th} \left (1 + \frac {R_s}{R_{sh}}\right )}
39+ z = \frac {R_s I_0 }{n N_s V_{th} \left (1 + \frac {R_s}{R_{sh}} \right )} \exp \left (
40+ \frac {R_s \left ( I_L + I_0 \right ) + V}{n N_s V_{th} \left (1 + \frac {R_s}{R_{sh}}\right )}
4141 \right )
4242
4343 Then the module current can be solved using the Lambert W-function,
@@ -46,7 +46,7 @@ Then the module current can be solved using the Lambert W-function,
4646.. math ::
4747
4848 I = \frac {I_L + I_0 - \frac {V}{R_{sh}}}{1 + \frac {R_s}{R_{sh}}}
49- - \frac {n Ns V_{th}}{R_s} W \left (z \right )
49+ - \frac {n N_s V_{th}}{R_s} W \left (z \right )
5050
5151
5252 Bishop's Algorithm
@@ -60,7 +60,7 @@ by a zero diode voltage and an estimate of open circuit voltage given by
6060
6161.. math ::
6262
63- V_{oc, est} = n Ns V_{th} \log \left ( \frac {I_L}{I_0 } + 1 \right )
63+ V_{oc, est} = n N_s V_{th} \log \left ( \frac {I_L}{I_0 } + 1 \right )
6464
6565 We know that :math: `V_d = 0 ` corresponds to a voltage less than zero, and
6666we can also show that when :math: `V_d = V_{oc, est}`, the resulting
@@ -73,24 +73,24 @@ between 0 and :math:`V_{oc, est}` will always find any desired condition in the
7373
7474.. math ::
7575
76- I = I_L - I_0 \left (\exp \left (\frac {V_{oc, est}}{n Ns V_{th}} \right ) - 1 \right )
76+ I = I_L - I_0 \left (\exp \left (\frac {V_{oc, est}}{n N_s V_{th}} \right ) - 1 \right )
7777 - \frac {V_{oc, est}}{R_{sh}} \newline
7878
79- I = I_L - I_0 \left (\exp \left (\frac {n Ns V_{th} \log \left (\frac {I_L}{I_0 } + 1 \right )}{n Ns V_{th}} \right ) - 1 \right )
80- - \frac {n Ns V_{th} \log \left (\frac {I_L}{I_0 } + 1 \right )}{R_{sh}} \newline
79+ I = I_L - I_0 \left (\exp \left (\frac {n N_s V_{th} \log \left (\frac {I_L}{I_0 } + 1 \right )}{n N_s V_{th}} \right ) - 1 \right )
80+ - \frac {n N_s V_{th} \log \left (\frac {I_L}{I_0 } + 1 \right )}{R_{sh}} \newline
8181
8282 I = I_L - I_0 \left (\exp \left (\log \left (\frac {I_L}{I_0 } + 1 \right ) \right ) - 1 \right )
83- - \frac {n Ns V_{th} \log \left (\frac {I_L}{I_0 } + 1 \right )}{R_{sh}} \newline
83+ - \frac {n N_s V_{th} \log \left (\frac {I_L}{I_0 } + 1 \right )}{R_{sh}} \newline
8484
8585 I = I_L - I_0 \left (\frac {I_L}{I_0 } + 1 - 1 \right )
86- - \frac {n Ns V_{th} \log \left (\frac {I_L}{I_0 } + 1 \right )}{R_{sh}} \newline
86+ - \frac {n N_s V_{th} \log \left (\frac {I_L}{I_0 } + 1 \right )}{R_{sh}} \newline
8787
8888 I = I_L - I_0 \left (\frac {I_L}{I_0 } \right )
89- - \frac {n Ns V_{th} \log \left (\frac {I_L}{I_0 } + 1 \right )}{R_{sh}} \newline
89+ - \frac {n N_s V_{th} \log \left (\frac {I_L}{I_0 } + 1 \right )}{R_{sh}} \newline
9090
91- I = I_L - I_L - \frac {n Ns V_{th} \log \left ( \frac {I_L}{I_0 } + 1 \right )}{R_{sh}} \newline
91+ I = I_L - I_L - \frac {n N_s V_{th} \log \left ( \frac {I_L}{I_0 } + 1 \right )}{R_{sh}} \newline
9292
93- I = - \frac {n Ns V_{th} \log \left ( \frac {I_L}{I_0 } + 1 \right )}{R_{sh}}
93+ I = - \frac {n N_s V_{th} \log \left ( \frac {I_L}{I_0 } + 1 \right )}{R_{sh}}
9494
9595 References
9696----------
@@ -111,4 +111,4 @@ Clifford W. Hansen, Sandia `Report SAND2015-2065
111111
112112[4] "Computer simulation of the effects of electrical mismatches in
113113photovoltaic cell interconnection circuits" JW Bishop, Solar Cell (1988)
114- :doi: `10.1016/0379-6787(88)90059-2 `
114+ :doi: `10.1016/0379-6787(88)90059-2 `
0 commit comments