|
| 1 | +use volatile_register::RW; |
| 2 | + |
| 3 | +/// LEDC Controller registers. |
| 4 | +#[repr(C)] |
| 5 | +pub struct RegisterBlock { |
| 6 | + /// LEDC Control Register. |
| 7 | + pub ledc_control: RW<LedcControl>, |
| 8 | +} |
| 9 | + |
| 10 | +/// LEDC RGB mode. |
| 11 | +/// |
| 12 | +/// By default, the software configures data to LEDC according to |
| 13 | +/// GRB (MSB) mode, the LEDC internal combines data to output to |
| 14 | +/// the external LED. |
| 15 | +#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] |
| 16 | +#[repr(u32)] |
| 17 | +pub enum RgbMode { |
| 18 | + GRB = 0b000, |
| 19 | + GBR = 0b001, |
| 20 | + RGB = 0b010, |
| 21 | + RBG = 0b011, |
| 22 | + BGR = 0b100, |
| 23 | + BRG = 0b101, |
| 24 | +} |
| 25 | + |
| 26 | +/// LEDC Control Register. |
| 27 | +#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] |
| 28 | +#[repr(transparent)] |
| 29 | +pub struct LedcControl(u32); |
| 30 | + |
| 31 | +impl LedcControl { |
| 32 | + /// That the bit is enabled indicates LEDC can be started when LEDC |
| 33 | + /// data finished transmission or LEDC_EN is cleared to 0 by |
| 34 | + /// hardware in LEDC_SOFT_RESET situation. |
| 35 | + const LED_EN: u32 = 1 << 0; |
| 36 | + /// Write 1 to clear it automatically. |
| 37 | + /// The ranges of LEDC soft reset include the following points: all |
| 38 | + /// internal status registers, the control state machine returns to in |
| 39 | + /// idle status, the LEDC FIFO read & write point is cleared to 0, the |
| 40 | + /// LEDC interrupt is cleared; and the affected registers are |
| 41 | + /// followed. |
| 42 | + const LED_SOFT_RST: u32 = 1 << 1; |
| 43 | + /// MSB control for Blue data. |
| 44 | + const LED_MSB_B: u32 = 1 << 2; |
| 45 | + /// MSB control for Red data. |
| 46 | + const LED_MSB_R: u32 = 1 << 3; |
| 47 | + /// MSB control for Green data. |
| 48 | + const LED_MSB_G: u32 = 1 << 4; |
| 49 | + /// Adjust sequence of the combined GRB data. |
| 50 | + const LED_MSB_TOP: u32 = 1 << 5; |
| 51 | + /// The software writes 1 to the bit, the CPU triggers LEDC to |
| 52 | + /// transfer a reset to LED. |
| 53 | + /// Only when LEDC is in IDLE status, the reset can be performed. |
| 54 | + /// After the reset finished, the control state machine returns to |
| 55 | + /// the IDLE status. To return LEDC to the IDLE status, it also needs |
| 56 | + /// to be used with SOFT_RESET. |
| 57 | + /// When the software sets the bit, the software can read the bit |
| 58 | + /// to check if the reset is complete. |
| 59 | + const RESET_LED_EN: u32 = 1 << 10; |
| 60 | + |
| 61 | + /// LEDC is enabled. |
| 62 | + #[inline] |
| 63 | + pub const fn is_enabled(self) -> bool { |
| 64 | + (self.0 & Self::LED_EN) != 0 |
| 65 | + } |
| 66 | + |
| 67 | + /// Set or clear LEDC enable bit. |
| 68 | + #[inline] |
| 69 | + pub const fn set_enable(self, enable: bool) -> Self { |
| 70 | + if enable { |
| 71 | + Self(self.0 | Self::LED_EN) |
| 72 | + } else { |
| 73 | + Self(self.0 & !Self::LED_EN) |
| 74 | + } |
| 75 | + } |
| 76 | + |
| 77 | + /// Get the red LEDC MSB control bit. |
| 78 | + #[inline] |
| 79 | + pub const fn is_red_msb(self) -> bool { |
| 80 | + (self.0 & Self::LED_MSB_R) != 0 |
| 81 | + } |
| 82 | + /// Get the blue LEDC MSB control bit. |
| 83 | + #[inline] |
| 84 | + pub const fn is_blue_msb(self) -> bool { |
| 85 | + (self.0 & Self::LED_MSB_B) != 0 |
| 86 | + } |
| 87 | + /// Get the green LEDC MSB control bit. |
| 88 | + #[inline] |
| 89 | + pub const fn is_green_msb(self) -> bool { |
| 90 | + (self.0 & Self::LED_MSB_G) != 0 |
| 91 | + } |
| 92 | + |
| 93 | + /// Set or clear the red LEDC MSB control bit. |
| 94 | + #[inline] |
| 95 | + pub const fn set_red_msb(self, msb: bool) -> Self { |
| 96 | + let mut value = self.0; |
| 97 | + if msb { |
| 98 | + value |= Self::LED_MSB_R; |
| 99 | + } else { |
| 100 | + value &= !Self::LED_MSB_R; |
| 101 | + } |
| 102 | + Self(value) |
| 103 | + } |
| 104 | + /// Set or clear the blue LEDC MSB control bit. |
| 105 | + #[inline] |
| 106 | + pub const fn set_blue_msb(self, msb: bool) -> Self { |
| 107 | + let mut value = self.0; |
| 108 | + if msb { |
| 109 | + value |= Self::LED_MSB_B; |
| 110 | + } else { |
| 111 | + value &= !Self::LED_MSB_B; |
| 112 | + } |
| 113 | + Self(value) |
| 114 | + } |
| 115 | + /// Set or clear the green LEDC MSB control bit. |
| 116 | + #[inline] |
| 117 | + pub const fn set_green_msb(self, msb: bool) -> Self { |
| 118 | + let mut value = self.0; |
| 119 | + if msb { |
| 120 | + value |= Self::LED_MSB_G; |
| 121 | + } else { |
| 122 | + value &= !Self::LED_MSB_G; |
| 123 | + } |
| 124 | + Self(value) |
| 125 | + } |
| 126 | + |
| 127 | + /// LEDC MSB_TOP control bit. |
| 128 | + #[inline] |
| 129 | + pub const fn is_msb_top(self) -> bool { |
| 130 | + (self.0 & Self::LED_MSB_TOP) != 0 |
| 131 | + } |
| 132 | + /// Set or clear LEDC MSB_TOP control bit. |
| 133 | + #[inline] |
| 134 | + pub const fn set_msb_top(self, msb_top: bool) -> Self { |
| 135 | + let mut value = self.0; |
| 136 | + if msb_top { |
| 137 | + value |= Self::LED_MSB_TOP; |
| 138 | + } else { |
| 139 | + value &= !Self::LED_MSB_TOP; |
| 140 | + } |
| 141 | + Self(value) |
| 142 | + } |
| 143 | + |
| 144 | + /// Reset LED Enable bit status. |
| 145 | + #[inline] |
| 146 | + pub const fn set_reset_led_enable(self) -> Self { |
| 147 | + Self(self.0 | Self::RESET_LED_EN) |
| 148 | + } |
| 149 | + /// Check whether reset is done. |
| 150 | + #[inline] |
| 151 | + pub const fn is_reset_done(self) -> bool { |
| 152 | + (self.0 & Self::RESET_LED_EN) == 0 |
| 153 | + } |
| 154 | + |
| 155 | + /// RGB mode selection. |
| 156 | + #[inline] |
| 157 | + pub const fn rgb_mode(self) -> RgbMode { |
| 158 | + let raw_mode = self.0 >> 6 & 0b111; |
| 159 | + match raw_mode { |
| 160 | + 0b000 => RgbMode::GRB, |
| 161 | + 0b001 => RgbMode::GBR, |
| 162 | + 0b010 => RgbMode::RGB, |
| 163 | + 0b011 => RgbMode::RBG, |
| 164 | + 0b100 => RgbMode::BGR, |
| 165 | + 0b101 => RgbMode::BRG, |
| 166 | + _ => unreachable!(), |
| 167 | + } |
| 168 | + } |
| 169 | + |
| 170 | + /// Set RGB mode. |
| 171 | + #[inline] |
| 172 | + pub const fn set_rgb_mode(self, mode: RgbMode) -> Self { |
| 173 | + // RGB mode is in bits [8:6]. |
| 174 | + let mut value = self.0; |
| 175 | + value &= !(0b111 << 6); |
| 176 | + value |= (mode as u32) << 6; |
| 177 | + Self(value) |
| 178 | + } |
| 179 | + |
| 180 | + /// LEDC soft reset status. |
| 181 | + #[inline] |
| 182 | + pub const fn soft_reset(self) -> bool { |
| 183 | + (self.0 & Self::LED_SOFT_RST) != 0 |
| 184 | + } |
| 185 | + |
| 186 | + /// Clear LEDC soft reset. |
| 187 | + #[inline] |
| 188 | + pub const fn clear_soft_reset(self) -> Self { |
| 189 | + // Write 1 to clear it. |
| 190 | + Self(self.0 | Self::LED_SOFT_RST) |
| 191 | + } |
| 192 | + |
| 193 | + /// Total length of transfer data. |
| 194 | + #[inline] |
| 195 | + pub const fn total_data_length(self) -> u32 { |
| 196 | + (self.0 >> 16) & 0xFFF |
| 197 | + } |
| 198 | + |
| 199 | + /// Set total length of transfer data. |
| 200 | + #[inline] |
| 201 | + pub const fn set_total_data_length(self, length: u32) -> Self { |
| 202 | + let mut value = self.0; |
| 203 | + value &= !(0xFFF << 16); |
| 204 | + value |= (length & 0xFFF) << 16; |
| 205 | + Self(value) |
| 206 | + } |
| 207 | +} |
| 208 | + |
| 209 | +#[cfg(test)] |
| 210 | +mod tests { |
| 211 | + #[test] |
| 212 | + fn test_ledc_control_default_value() { |
| 213 | + use super::{LedcControl, RgbMode}; |
| 214 | + |
| 215 | + let reg = LedcControl(0x0000_003C); |
| 216 | + assert!(!reg.is_enabled()); |
| 217 | + assert!(!reg.soft_reset()); |
| 218 | + assert!(reg.is_blue_msb()); |
| 219 | + assert!(reg.is_red_msb()); |
| 220 | + assert!(reg.is_green_msb()); |
| 221 | + assert!(reg.is_msb_top()); |
| 222 | + assert_eq!(reg.rgb_mode(), RgbMode::GRB); |
| 223 | + assert_eq!(reg.total_data_length(), 0); |
| 224 | + } |
| 225 | +} |
0 commit comments