|
8 | 8 | @doc raw""" |
9 | 9 | IdealGlmMhdMulticomponentEquations2D |
10 | 10 |
|
11 | | -The ideal compressible multicomponent GLM-MHD equations in two space dimensions. |
| 11 | +The ideal compressible multicomponent GLM-MHD equations |
| 12 | +```math |
| 13 | +\frac{\partial}{\partial t} |
| 14 | +\begin{pmatrix} |
| 15 | +\rho \mathbf{v} \\ \rho e \\ \mathbf{B} \\ \psi \\ \rho_1 \\ \vdots \\ \rho_{n} |
| 16 | +\end{pmatrix} |
| 17 | ++ |
| 18 | +\nabla \cdot |
| 19 | +\begin{pmatrix} |
| 20 | +\rho (\mathbf{v} \otimes \mathbf{v}) + (p + \frac{1}{2} \Vert \mathbf{B} \Vert_2 ^2) \underline{I} - \mathbf{B} \otimes \mathbf{B} \\ |
| 21 | +\mathbf{v} (\frac{1}{2} \rho \Vert \mathbf{v} \Vert_2 ^2 + \frac{\gamma p}{\gamma - 1} + \Vert \mathbf{B} \Vert_2 ^2) - \mathbf{B} (\mathbf{v} \cdot \mathbf{B}) + c_h \psi \mathbf{B} \\ |
| 22 | +\mathbf{v} \otimes \mathbf{B} - \mathbf{B} \otimes \mathbf{v} + c_h \psi \underline{I} \\ |
| 23 | +c_h \mathbf{B} \\ \rho_1 \mathbf{v} \\ \vdots \\ \rho_{n} \mathbf{v} |
| 24 | +\end{pmatrix} |
| 25 | ++ |
| 26 | +(\nabla \cdot \mathbf{B}) |
| 27 | +\begin{pmatrix} |
| 28 | +\mathbf{B} \\ \mathbf{v} \cdot \mathbf{B} \\ \mathbf{v} \\ 0 \\ 0 \\ \vdots \\ 0 |
| 29 | +\end{pmatrix} |
| 30 | ++ |
| 31 | +(\nabla \psi) \cdot |
| 32 | +\begin{pmatrix} |
| 33 | +0 \\ \mathbf{v} \cdot \psi \\ 0 \\ \mathbf{v} \\ \mathbf{0} \\ \vdots \\ \mathbf{0} |
| 34 | +\end{pmatrix} |
| 35 | += |
| 36 | +\begin{pmatrix} |
| 37 | +\mathbf{0} \\ 0 \\ \mathbf{0} \\ 0 \\ 0 \\ \vdots \\ 0 |
| 38 | +\end{pmatrix} |
| 39 | +``` |
| 40 | +for calorically perfect gases in two space dimensions. |
| 41 | +Here, ``\rho_i`` is the density of component ``i``, ``\rho=\sum_{i=1}^n\rho_i`` the sum of the individual ``\rho_i``, |
| 42 | +``\mathbf{v}`` the velocity, ``\mathbf{B}`` the magnetic field, ``c_h`` the hyperbolic divergence cleaning speed, |
| 43 | +``\psi`` the generalized Lagrangian Multiplier (GLM), |
| 44 | +``e`` the specific total energy **rather than** specific internal energy, and |
| 45 | +```math |
| 46 | +p = (\gamma - 1) \left( \rho e - \frac{1}{2} \rho \Vert \mathbf{v} \Vert_2 ^2 - \frac{1}{2} \Vert \mathbf{B} \Vert_2 ^2 - \frac{1}{2} \psi^2 \right) |
| 47 | +``` |
| 48 | +the pressure, |
| 49 | +```math |
| 50 | +\gamma=\frac{\sum_{i=1}^n\rho_i C_{v,i}\gamma_i}{\sum_{i=1}^n\rho_i C_{v,i}} |
| 51 | +``` |
| 52 | +total heat capacity ratio, ``\gamma_i`` heat capacity ratio of component ``i``, |
| 53 | +```math |
| 54 | +C_{v,i}=\frac{R_i}{\gamma_i-1} |
| 55 | +``` |
| 56 | +specific heat capacity at constant volume of component ``i`` and ``\underline{I}`` the ``2\times 2`` identity matrix. |
| 57 | +
|
| 58 | +In case of more than one component, the specific heat ratios `gammas` and the gas constants |
| 59 | +`gas_constants` should be passed as tuples, e.g., `gammas = (1.4, 1.667)`. |
| 60 | +
|
| 61 | +The remaining variables like the specific heats at constant volume `cv` or the specific heats at |
| 62 | +constant pressure `cp` are then calculated considering a calorically perfect gas. |
12 | 63 | """ |
13 | 64 | struct IdealGlmMhdMulticomponentEquations2D{NVARS, NCOMP, RealT <: Real} <: |
14 | 65 | AbstractIdealGlmMhdMulticomponentEquations{2, NVARS, NCOMP} |
|
0 commit comments