@@ -230,7 +230,7 @@ function energy_at_final_time(k) # k is the wave number of the initial condition
230230 semi = SemidiscretizationHyperbolic (mesh, equations, initial_condition, solver,
231231 uEltype = typeof (k))
232232 ode = semidiscretize (semi, (0.0 , 1.0 ))
233- sol = solve (ode, BS3 (); ode_default_options () ... )
233+ sol = solve (ode, FRK65 (), dt = 0.05 , adaptive = false , save_everystep = false )
234234 Trixi. integrate (energy_total, sol. u[end ], semi)
235235end
236236
@@ -280,7 +280,7 @@ function energy_at_final_time(k) # k is the wave number of the initial condition
280280 semi = SemidiscretizationHyperbolic (mesh, equations, initial_condition, solver,
281281 uEltype = typeof (k))
282282 ode = semidiscretize (semi, (0.0 , 1.0 ))
283- sol = solve (ode, BS3 (); ode_default_options () ... )
283+ sol = solve (ode, FRK65 (), dt = 0.05 , adaptive = false , save_everystep = false )
284284 Trixi. integrate (energy_total, sol. u[end ], semi)
285285end
286286
@@ -330,9 +330,9 @@ semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver,
330330# does. This is basically the only part where you need to modify your standard Trixi.jl
331331# code to enable automatic differentiation. From there on, the remaining steps
332332ode = semidiscretize (semi, (0.0 , 1.0 ))
333- sol = solve (ode, BS3 (); ode_default_options () ... )
333+ sol = solve (ode, FRK65 (), dt = 0.05 , adaptive = false , save_everystep = false )
334334round (Trixi. integrate (energy_total, sol. u[end ], semi), sigdigits = 5 )
335- @test round (Trixi. integrate (energy_total, sol. u[end ], semi), sigdigits = 5 ) == 0.24986 # src
335+ @test round (Trixi. integrate (energy_total, sol. u[end ], semi), sigdigits = 5 ) == 0.25 # src
336336
337337# do not need any modifications since they are sufficiently generic (and enough effort
338338# has been spend to allow general types inside these calls).
0 commit comments