Skip to content

Commit 03e694a

Browse files
kylesayrsbrian-dellabettaHDCharlesfynnsu
authored
[AWQ] Generalize AWQ quantization (#1961)
### Summary To allow for arbitrary heterogeneous quantization schemes, this PR switches several helpers from AutoAWQ to the observer and QDQ logic. AWQ no longer constrains that the quantization config needs to have the same settings for group_size, symmetric, and num_bits for each config_group. Resolves #1657 Prerequisites: * vllm-project/compressed-tensors#519 ### Test plan - [x] When running `llm-compressor/examples/awq/llama_example.py` with this (with `duo_scaling="both"`) and logging the best configuration of `(ratio, duo_scaling)`, I see a good mix of Falses and Trues. i.e. a good percentage of best_scales were found with duo_scaling=False and a good percentage were found with `duo_scaling=True`. Generated model output looks good. - [x] When using `awq_one_shot.py` (pasted below), Wikitext PPL is consistent for w4a16 and w4a16_asym on this branch when compared to main, and better than what was reported in a [previous AWQ PR](#1444 (comment)), but those might have been differently configured. For W4A16_ASYM, the results are both 13.41 for main and this branch. This is what we've been historically using to test regressions. |Scheme|Wikitext PPL RTN|AWQ main|AWQ this branch| |-----------:|---------------------:|----------|-----:| |W4A16| 13.784 |13.477| 13.426| |W4A16_ASYM | 13.606 | 13.346 | 13.377| - [x] I see a small regression in recovery when running `CADENCE=weekly TEST_DATA_FILE=~/projects/llm-compressor/tests/lmeval/configs/w4a16_awq_sym.yaml pytest -s ~/projects/llm-compressor/tests/lmeval/test_lmeval.py` on this branch, which causes the test to fail. This persists even when using `pseudo_quantize_tensor` instead of `call_observer`/`forward_quantize`, as shown in [this diff](https://github.com/vllm-project/llm-compressor/compare/kylesayrs/awq-generalize-quant...bdellabe/awq-generalize-quant?expand=1). I get the same result in this diff, so at least that means quantization logic in CT is consistent with AutoAWQ Output: ``` <main> 2025-11-17T18:26:04.682699+0000 | _validate_recovery | INFO - ✓ exact_match,strict-match | Base: 0.7650 | Compressed: 0.7090 | Recovery: 92.68% ↑ | Threshold: ≥92.00% 2025-11-17T18:26:04.682811+0000 | _validate_recovery | INFO - ✓ exact_match,flexible-extract | Base: 0.7630 | Compressed: 0.7100 | Recovery: 93.05% ↑ | Threshold: ≥93.00% <this branch> 2025-11-17T17:55:00.648672+0000 | _validate_recovery | ERROR - ✗ exact_match,strict-match | Base: 0.7650 | Compressed: 0.6950 | Recovery: 90.85% ↑ | Threshold: ≥92.00% 2025-11-17T17:55:00.648967+0000 | _validate_recovery | ERROR - ✗ exact_match,flexible-extract | Base: 0.7630 | Compressed: 0.6960 | Recovery: 91.22% ↑ | Threshold: ≥93.00% ``` This is already a pretty high drop in recovery, should we revisit this test? - [x] Further regression testing against main was done in this [commit](8b6b0a5) see [run.sh](https://github.com/vllm-project/llm-compressor/blob/8b6b0a5ae27084756df5d7e3fd0eca60cbe07b87/run.sh) as of that commit which was removed in the final PR. Results look reasonable comparing branch and main, some up some down, within margin of error. Test Group Quantization (w4a16_awq_sym) | Branch | Metric | Base | Compressed | Recovery | |-----------|------------------------------|--------|------------|----------| | On Branch | exact_match,strict-match | 0.7620 | 0.7170 | 94.09% ↑ | | On Branch | exact_match,flexible-extract | 0.7600 | 0.7130 | 93.82% ↑ | | On Main | exact_match,strict-match | 0.7620 | 0.7090 | 93.04% | | On Main | exact_match,flexible-extract | 0.7600 | 0.7060 | 92.89% | Test Tensor Quantization (int8_tensor) | Branch | Metric | Base | Compressed | Recovery | |-----------|------------------------------|--------|------------|----------| | On Branch | exact_match,strict-match | 0.7620 | 0.7220 | 94.75% ↓ | | On Branch | exact_match,flexible-extract | 0.7600 | 0.7240 | 95.26% ↓ | | On Main | exact_match,strict-match | 0.7620 | 0.7280 | 95.54% | | On Main | exact_match,flexible-extract | 0.7600 | 0.7310 | 96.18% | Test Channel Quantization (fp8_dynamic) | Branch | Metric | Base | Compressed | Recovery | |-----------|------------------------------|--------|------------|----------| | On Branch | exact_match,strict-match | 0.7650 | 0.7610 | 99.48% | | On Branch | exact_match,flexible-extract | 0.7630 | 0.7580 | 99.34% | Test Block Quantization (fp8_block) | Branch | Metric | Base | Compressed | Recovery | |-----------|------------------------------|--------|------------|-----------| | On Branch | exact_match,strict-match | 0.7650 | 0.7720 | 100.92% | | On Branch | exact_match,flexible-extract | 0.7630 | 0.7690 | 100.79% | <details> <summary>awq_oneshot.py script</summary> ```python import os os.environ["VLLM_WORKER_MULTIPROC_METHOD"] = "spawn" from datasets import load_dataset from transformers import AutoModelForCausalLM, AutoTokenizer import torch from llmcompressor import oneshot, active_session from llmcompressor.utils import dispatch_for_generation from llmcompressor.modifiers.awq import AWQModifier, AWQMapping from llmcompressor.modifiers.quantization import QuantizationModifier from compressed_tensors.quantization import ( QuantizationArgs, QuantizationScheme, QuantizationStrategy, QuantizationType, ) MODEL_ID = "meta-llama/Llama-3.2-3B-Instruct" SAVE_DIR = MODEL_ID.split("/")[-1] + "-awq-asym" # Configure the quantization algorithm to run. recipe = [ AWQModifier( ignore=[ "lm_head", "re:.*mlp.gate$", "re:.*mlp.shared_expert_gate$", "re:visual.*", ], scheme="W4A16_ASYM", duo_scaling="both", targets=["Linear"], # offload_device=torch.device("cpu"), ), ] # Select calibration dataset. DATASET_ID = "mit-han-lab/pile-val-backup" DATASET_SPLIT = "validation" # Select number of samples. 256 samples is a good place to start. # Increasing the number of samples can improve accuracy. NUM_CALIBRATION_SAMPLES = 256 MAX_SEQUENCE_LENGTH = 512 def get_calib_dataset(tokenizer): from datasets import load_dataset ds = load_dataset( DATASET_ID, split=f"{DATASET_SPLIT}[:{NUM_CALIBRATION_SAMPLES*10}]", ) def preprocess(example): return {"input_ids": tokenizer.encode(example["text"].strip())} ds = ( ds.shuffle(seed=42) .map(preprocess, remove_columns=ds.column_names) .select(range(NUM_CALIBRATION_SAMPLES)) ) return ds if __name__ == "__main__": model = AutoModelForCausalLM.from_pretrained( MODEL_ID, torch_dtype="auto", trust_remote_code=True ) tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True) ### ### Apply algorithms. ### oneshot( model=model, dataset=get_calib_dataset(tokenizer), recipe=recipe, max_seq_length=MAX_SEQUENCE_LENGTH, num_calibration_samples=NUM_CALIBRATION_SAMPLES, log_dir=None, trust_remote_code_model=True, ) # Confirm generations of the quantized model look sane. dispatch_for_generation(model) print("\n\n") print("========== SAMPLE GENERATION ==============") input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda") output = model.generate(input_ids, max_new_tokens=100) print(tokenizer.decode(output[0])) print("==========================================\n\n") # Save to disk compressed. model.save_pretrained(SAVE_DIR) tokenizer.save_pretrained(SAVE_DIR) ## ### Apply algorithms. ## ## LM EVAL active_session().reset() del model del tokenizer torch.cuda.empty_cache() import lm_eval from lm_eval.utils import make_table results = lm_eval.simple_evaluate( model="vllm", model_args={ "pretrained": SAVE_DIR, "add_bos_token": True, "dtype": "bfloat16", "gpu_memory_utilization": 0.7, "max_model_len": 4096, # "max_num_batched_tokens": 128, # "max_num_seqs": 128, }, tasks=["wikitext"], batch_size=128, ) print(make_table(results)) ``` </details> --------- Signed-off-by: Kyle Sayers <[email protected]> Signed-off-by: Brian Dellabetta <[email protected]> Signed-off-by: HDCharles <[email protected]> Co-authored-by: Brian Dellabetta <[email protected]> Co-authored-by: HDCharles <[email protected]> Co-authored-by: Fynn Schmitt-Ulms <[email protected]>
1 parent 056ed3d commit 03e694a

File tree

4 files changed

+448
-275
lines changed

4 files changed

+448
-275
lines changed

examples/awq/llama_example.py

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -50,7 +50,9 @@ def tokenize(sample):
5050

5151
# Configure the quantization algorithm to run.
5252
recipe = [
53-
AWQModifier(ignore=["lm_head"], scheme="W4A16_ASYM", targets=["Linear"]),
53+
AWQModifier(
54+
ignore=["lm_head"], scheme="W4A16_ASYM", targets=["Linear"], duo_scaling="both"
55+
),
5456
]
5557

5658
# Apply algorithms.

0 commit comments

Comments
 (0)