Welcome to the Data Warehouse and Analytics Project repository! 🚀
This project demonstrates a comprehensive data warehousing and analytics solution, from building a data warehouse to generating actionable insights. Designed as a portfolio project, it highlights industry best practices in data engineering and analytics.
Develop a modern data warehouse using SQL Server to consolidate sales data, enabling analytical reporting and informed decision-making.
- Data Sources: Import data from two source systems (ERP and CRM) provided as CSV files.
- Data Quality: Cleanse and resolve data quality issues prior to analysis.
- Integration: Combine both sources into a single, user-friendly data model designed for analytical queries.
- Scope: Focus on the latest dataset only; historization of data is not required.
- Documentation: Provide clear documentation of the data model to support both business stakeholders and analytics teams.
Develop SQL-based analytics to deliver detailed insights into:
- Customer Behavior
- Product Performance
- Sales Trends
These insights empower stakeholders with key business metrics, enabling strategic decision-making.
data-warehouse-project/
│
├── datasets/ # Raw datasets used for the project (ERP and CRM data)
│
├── docs/ # Project documentation and architecture details
│ ├── etl.drawio # Draw.io file shows all different techniquies and methods of ETL
│ ├── data_architecture.drawio # Draw.io file shows the project's architecture
│ ├── data_catalog.md # Catalog of datasets, including field descriptions and metadata
│ ├── data_flow.drawio # Draw.io file for the data flow diagram
│ ├── data_models.drawio # Draw.io file for data models (star schema)
│ ├── naming-conventions.md # Consistent naming guidelines for tables, columns, and files
│
├── scripts/ # SQL scripts for ETL and transformations
│ ├── bronze/ # Scripts for extracting and loading raw data
│ ├── silver/ # Scripts for cleaning and transforming data
│ ├── gold/ # Scripts for creating analytical models
│
├── tests/ # Test scripts and quality files
│
├── README.md # Project overview and instructions
├── LICENSE # License information for the repository
├── .gitignore # Files and directories to be ignored by Git
└── requirements.txt # Dependencies and requirements for the project
This project is licensed under the MIT License. You are free to use, modify, and share this project with proper attribution.
Hi there! I'm Ahmed Hassan. I’m a MSc degree data science graduate with experience in multiple sectors across Telecommunications, manufacturing and satellites on a mission to master Data wrangling and analytics!