UPOQA is a derivative-free model-based optimizer designed for unconstrained optimization problems with partially-separable structures. This solver leverages quadratic interpolation models within a trust-region framework to efficiently solve complex optimization problems without requiring gradient information.
For more details, please refer to the documentation or our paper.
UPOQA requires Python 3.8 or higher to be installed, and the following python packages should be installed (these will be installed automatically if using pip):
- NumPy (http://www.numpy.org/)
- SciPy (http://www.scipy.org/)
- tqdm (https://github.com/tqdm/tqdm)
You can install upoqa using pip:
pip install upoqa # minimal install
pip install upoqa[profile] # + all benchmarking dependenciesupoqa.minimize(fun, x0, coords={}, maxiter=None, maxfev={}, weights={}, xforms={}, xform_bounds={},
extra_fun=None, npt=None, radius_init=1.0, radius_final=1e-06, noise_level=0,
seek_global_minimum=False, f_target=None, tr_shape='structured', callback=None,
disp=True, verbose=False, debug=False, return_internals=False, options={}, **kwargs)Returned object (upoqa.utils.OptimizeResult) contains x, fun, element values funs, evaluation counts nfev, and more—see the full docstring and documentation.
Here is a simple example of using the solver to minimize a function with two elements:
let's replace
where
then we can optimize it by the following code:
from upoqa import minimize
def f1(x): # f1(x,y)
return x[0] ** 2 + x[1] ** 2 + 2 * x[0] * x[1] # x^2 + y^2 + 2xy
def f2(x): # f2(y,z)
return x[0] ** 2 + x[1] ** 2 - (x[0] + 1) * x[1] # y^2 + z^2 - (y+1)z
fun = {'xy': f1, 'yz': f2 }
coords = {'xy': [0, 1], 'yz': [1, 2]}
x0 = [0, 0, 0]
result = minimize(fun, x0, coords = coords, disp = False)
print(result)The output will be
message: Success: The resolution has reached its minimum.
success: True
fun: -0.33333333333333215
funs: xy: 3.3306690738754696e-16
yz: -0.3333333333333325
extra_fun: 0.0
x: [-3.333e-01 3.333e-01 6.667e-01]
jac: [-3.137e-08 -9.089e-08 2.260e-09]
hess: [[ 1.962e+00 1.980e+00 0.000e+00]
[ 1.980e+00 4.042e+00 -1.002e+00]
[ 0.000e+00 -1.002e+00 1.997e+00]]
nit: 39
nfev: xy: 39
yz: 38
max_nfev: 39
avg_nfev: 38.5
nrun: 1
UPOQA solves optimization problems with partially-separable structures:
Where:
-
$f_i:\mathbb{R}^{|\mathcal{I}_i|} \to \mathbb{R}$ are black-box element functions whose gradients and hessians are unavailable -
$U_i$ are projection operators selecting relevant variables -
$|\mathcal{I}_i| < n$ (element functions depend on small subsets of variables)
The solver also supports a more general objective form:
where:
-
$f_0$ is a white-box component with known derivatives -
$w_i$ are element weights -
$h_i$ are smooth transformations of element outputs
Contributions are welcome! Please submit pull requests to our repository.
This project is licensed under the GPLv3 License - see the LICENSE file for details.