Skip to content
/ upoqa Public

A derivative-free optimization method for partially separable problems.

License

Notifications You must be signed in to change notification settings

Chitius/upoqa

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

UPOQA: Unconstrained Partially-separable Optimization by Quadratic Approximation

UPOQA is a derivative-free model-based optimizer designed for unconstrained optimization problems with partially-separable structures. This solver leverages quadratic interpolation models within a trust-region framework to efficiently solve complex optimization problems without requiring gradient information.

For more details, please refer to the documentation or our paper.

Installation

UPOQA requires Python 3.8 or higher to be installed, and the following python packages should be installed (these will be installed automatically if using pip):

You can install upoqa using pip:

pip install upoqa           # minimal install
pip install upoqa[profile]  # + all benchmarking dependencies

Basic Usage

API in a nutshell

upoqa.minimize(fun, x0, coords={}, maxiter=None, maxfev={}, weights={}, xforms={}, xform_bounds={}, 
               extra_fun=None, npt=None, radius_init=1.0, radius_final=1e-06, noise_level=0, 
               seek_global_minimum=False, f_target=None, tr_shape='structured', callback=None, 
               disp=True, verbose=False, debug=False, return_internals=False, options={}, **kwargs)

Returned object (upoqa.utils.OptimizeResult) contains x, fun, element values funs, evaluation counts nfev, and more—see the full docstring and documentation.

A Simple Example

Here is a simple example of using the solver to minimize a function with two elements:

$$ \min_{x,y,z\in \mathbb{R}} \quad x^2 + 2y^2 + z^2 + 2xy - (y + 1)z $$

let's replace $[x,y,z]$ with $\mathbf{x} = [x_1,x_2,x_3]$, and rewrite this problem into

$$ \min_{\mathbf{x}\in\mathbb{R}^3} \quad f_1(x_1, x_2) + f_2(x_2, x_3) $$

where

$$ f_1(x_1, x_2) = x_1^2 + x_2^2 + 2x_1 x_2, \quad f_2(x_2, x_3) = x_2^2 + x_3^2 - (x_2 + 1)x_3, $$

then we can optimize it by the following code:

from upoqa import minimize

def f1(x):    # f1(x,y)
    return x[0] ** 2 + x[1] ** 2 + 2 * x[0] * x[1]     # x^2 + y^2 + 2xy

def f2(x):    # f2(y,z)
    return x[0] ** 2 + x[1] ** 2 - (x[0] + 1) * x[1]   # y^2 + z^2 - (y+1)z

fun =    {'xy': f1,     'yz': f2    }
coords = {'xy': [0, 1], 'yz': [1, 2]}
x0 = [0, 0, 0]

result = minimize(fun, x0, coords = coords, disp = False)
print(result)

The output will be

   message: Success: The resolution has reached its minimum. 
   success: True
       fun: -0.33333333333333215
      funs: xy: 3.3306690738754696e-16
            yz: -0.3333333333333325
 extra_fun: 0.0
         x: [-3.333e-01  3.333e-01  6.667e-01]
       jac: [-3.137e-08 -9.089e-08  2.260e-09]
      hess: [[ 1.962e+00  1.980e+00  0.000e+00]
             [ 1.980e+00  4.042e+00 -1.002e+00]
             [ 0.000e+00 -1.002e+00  1.997e+00]]
       nit: 39
      nfev: xy: 39
            yz: 38
  max_nfev: 39
  avg_nfev: 38.5
      nrun: 1

Mathematical Background

UPOQA solves optimization problems with partially-separable structures:

$$ \min_{x\in\mathbb{R}^n} \quad \sum_{i=1}^q f_i(U_i x), $$

Where:

  • $f_i:\mathbb{R}^{|\mathcal{I}_i|} \to \mathbb{R}$ are black-box element functions whose gradients and hessians are unavailable
  • $U_i$ are projection operators selecting relevant variables
  • $|\mathcal{I}_i| < n$ (element functions depend on small subsets of variables)

The solver also supports a more general objective form:

$$ \min_{x\in\mathbb{R}^n} \quad f_0(x) + \sum_{i=1}^q w_i h_i\left(f_i(U_i x)\right), $$

where:

  • $f_0$ is a white-box component with known derivatives
  • $w_i$ are element weights
  • $h_i$ are smooth transformations of element outputs

Contributing

Contributions are welcome! Please submit pull requests to our repository.

License

This project is licensed under the GPLv3 License - see the LICENSE file for details.

About

A derivative-free optimization method for partially separable problems.

Resources

License

Stars

Watchers

Forks

Packages

No packages published