|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "%matplotlib inline \n", |
| 10 | + "import os\n", |
| 11 | + "import csv\n", |
| 12 | + "import pandas as pd\n", |
| 13 | + "import numpy as np\n", |
| 14 | + "import matplotlib.pyplot as plt" |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "code", |
| 19 | + "execution_count": 2, |
| 20 | + "metadata": {}, |
| 21 | + "outputs": [], |
| 22 | + "source": [ |
| 23 | + "run_no = 1 \n", |
| 24 | + "rundays = 365\n", |
| 25 | + "runhours = rundays*24\n", |
| 26 | + "\n", |
| 27 | + "hr_range = pd.date_range('1/1/2001', periods=runhours, freq='H')\n", |
| 28 | + "day_range = pd.date_range('1/1/2001', periods=rundays, freq='D')" |
| 29 | + ] |
| 30 | + }, |
| 31 | + { |
| 32 | + "cell_type": "code", |
| 33 | + "execution_count": 3, |
| 34 | + "metadata": {}, |
| 35 | + "outputs": [], |
| 36 | + "source": [ |
| 37 | + "df_gen = pd.read_csv('data_camb_genparams.csv',header=0)\n", |
| 38 | + "df_load = pd.read_csv('data_camb_load_2016.csv',header=0)\n", |
| 39 | + " \n", |
| 40 | + "sys_load = (df_load.iloc[:,4:].sum(axis=1)).values\n", |
| 41 | + "#reserve = (sys_load*0.15).values" |
| 42 | + ] |
| 43 | + }, |
| 44 | + { |
| 45 | + "cell_type": "code", |
| 46 | + "execution_count": 4, |
| 47 | + "metadata": {}, |
| 48 | + "outputs": [], |
| 49 | + "source": [ |
| 50 | + "gen_name = df_gen['name']\n", |
| 51 | + "gen_type = df_gen['typ']" |
| 52 | + ] |
| 53 | + }, |
| 54 | + { |
| 55 | + "cell_type": "code", |
| 56 | + "execution_count": 5, |
| 57 | + "metadata": {}, |
| 58 | + "outputs": [ |
| 59 | + { |
| 60 | + "data": { |
| 61 | + "text/plain": [ |
| 62 | + "(9.010021695594252, 19.18987059712856)" |
| 63 | + ] |
| 64 | + }, |
| 65 | + "execution_count": 5, |
| 66 | + "metadata": {}, |
| 67 | + "output_type": "execute_result" |
| 68 | + } |
| 69 | + ], |
| 70 | + "source": [ |
| 71 | + "srsv = pd.read_csv('out_camb_R'+str(run_no)+'_2016_srsv.csv',header=0)\n", |
| 72 | + "nrsv = pd.read_csv('out_camb_R'+str(run_no)+'_2016_nrsv.csv',header=0)\n", |
| 73 | + " \n", |
| 74 | + "###Include Generator_type to the srsv data\n", |
| 75 | + "for x in range(len(gen_name)):\n", |
| 76 | + " srsv.loc[srsv.Generator == gen_name[x], 'Type'] = gen_type[x]\n", |
| 77 | + " nrsv.loc[nrsv.Generator == gen_name[x], 'Type'] = gen_type[x]\n", |
| 78 | + " \n", |
| 79 | + "####Reserve_GWh by Type\n", |
| 80 | + "srsv_bytype = round(srsv.groupby(['Type'])['Value'].sum()/1000,1)\n", |
| 81 | + "nrsv_bytype = round(nrsv.groupby(['Type'])['Value'].sum()/1000,1)\n", |
| 82 | + " \n", |
| 83 | + "\n", |
| 84 | + "###Reserve_ratios by Time only\n", |
| 85 | + "srsv_bytime = srsv.groupby(['Time'])['Value'].sum().values\n", |
| 86 | + "nrsv_bytime = nrsv.groupby(['Time'])['Value'].sum().values\n", |
| 87 | + "trsv_bytime = srsv_bytime +nrsv_bytime \n", |
| 88 | + " \n", |
| 89 | + "srsv_ratio = srsv_bytime*100/sys_load\n", |
| 90 | + "nrsv_ratio = nrsv_bytime*100/sys_load\n", |
| 91 | + "trsv_ratio = trsv_bytime*100/sys_load\n", |
| 92 | + "\n", |
| 93 | + "avg_srsv = np.mean(srsv_ratio)\n", |
| 94 | + "avg_trsv = np.mean(trsv_ratio)\n", |
| 95 | + "\n", |
| 96 | + "\n", |
| 97 | + "avg_srsv,avg_trsv" |
| 98 | + ] |
| 99 | + }, |
| 100 | + { |
| 101 | + "cell_type": "code", |
| 102 | + "execution_count": null, |
| 103 | + "metadata": {}, |
| 104 | + "outputs": [], |
| 105 | + "source": [] |
| 106 | + }, |
| 107 | + { |
| 108 | + "cell_type": "code", |
| 109 | + "execution_count": null, |
| 110 | + "metadata": {}, |
| 111 | + "outputs": [], |
| 112 | + "source": [] |
| 113 | + } |
| 114 | + ], |
| 115 | + "metadata": { |
| 116 | + "kernelspec": { |
| 117 | + "display_name": "Python 3", |
| 118 | + "language": "python", |
| 119 | + "name": "python3" |
| 120 | + }, |
| 121 | + "language_info": { |
| 122 | + "codemirror_mode": { |
| 123 | + "name": "ipython", |
| 124 | + "version": 3 |
| 125 | + }, |
| 126 | + "file_extension": ".py", |
| 127 | + "mimetype": "text/x-python", |
| 128 | + "name": "python", |
| 129 | + "nbconvert_exporter": "python", |
| 130 | + "pygments_lexer": "ipython3", |
| 131 | + "version": "3.7.3" |
| 132 | + } |
| 133 | + }, |
| 134 | + "nbformat": 4, |
| 135 | + "nbformat_minor": 2 |
| 136 | +} |
0 commit comments