lexicon.csvThe lexicon of OSM tags and the corresponding health-promoting activity category.scores_cities.csvPark health scores of all cities.fingerprints_cities.csvAll raw counts of elements and spaces in the parks of all cities.ignored_keys.txtIgnored OSM Keysignored_values.txtIgnored OSM Values
All files can be found in the data folder.
- Install Python 3.9.
- Install a current version of R
- Install and start a couchDB
- Install Python dependencies:
pip install -r requirements.txt - Install R dependencies:
Rscript dependencies.R
curl -X PUT http://<USERNAME>:<PASSWORD>@127.0.0.1:5984/osm_tags_cache_osmium_<CITY_NAME>create a database for each city1-osm.py: Extracts the parks and their elements and spaces from OpenStreetMap and stores them in a couchDB. Example invocation:python 1-osm.py --couchdb http://<USERNAME>:<PASSWORD>@127.0.0.1:5984 --city vienna --osm_id 109166 --region europe/austria2-park_fingerprints.py: Counts the elements and spaces within each park. Example invocation:python 2-park_fingerprints.py --couchdb http://<USERNAME>:>PASSWORD>@127.0.0.1:5984 --city vienna3-park_scores.R: Compute the park health scores. Example invocation:Rscript 3-park-scores.R --city_name vienna
The visualization folder contains a web-based interface to explore the park scores. It can be viewed by opening the index.html file.