This document outlines the comprehensive security architecture of the LockLess biometric authentication system.
- Security Overview
- Threat Model
- Security Principles
- Encryption Architecture
- Biometric Security
- Key Management
- Template Storage
- Liveness Detection
- Access Control
- Audit Logging
- Platform Security
- Security Testing
- Compliance
- Security Best Practices
LockLess implements a multi-layered security architecture designed to protect biometric data and ensure system integrity. The system follows the principle of "defense in depth" with multiple security controls at each layer.
┌─────────────────────────────────────────────────────────┐
│ Application Layer │
│ • Input Validation • Access Control • Audit Logging │
├─────────────────────────────────────────────────────────┤
│ Biometric Layer │
│ • Liveness Detection • Anti-Spoofing • Quality Check │
├─────────────────────────────────────────────────────────┤
│ Encryption Layer │
│ • AES-256 Encryption • Key Derivation • Secure Storage│
├─────────────────────────────────────────────────────────┤
│ Platform Layer │
│ • TPM Integration • Secure Boot • Memory Protection│
└─────────────────────────────────────────────────────────┘
- Threat: Unauthorized access to biometric templates
- Mitigation: AES-256 encryption, secure key management
- Detection: Audit logging, access monitoring
- Threat: Presentation attacks using photos, videos, or masks
- Mitigation: Multi-modal liveness detection
- Detection: Real-time anti-spoofing algorithms
- Threat: Replaying captured biometric data
- Mitigation: Challenge-response mechanisms, timestamp validation
- Detection: Session management, nonce validation
- Threat: Reconstructing original biometric data from templates
- Mitigation: One-way feature extraction, template protection
- Detection: Template integrity checks
- Threat: Extracting information through timing or power analysis
- Mitigation: Constant-time algorithms, secure coding practices
- Detection: Performance monitoring
- Threat: Gaining unauthorized system access
- Mitigation: Principle of least privilege, access controls
- Detection: Audit logging, anomaly detection
- Never Trust, Always Verify: All access requests are verified
- Least Privilege: Users have minimum required permissions
- Continuous Monitoring: All activities are logged and monitored
- Data Minimization: Only collect necessary biometric data
- Purpose Limitation: Use data only for intended purposes
- Retention Limitation: Delete data when no longer needed
- Local Processing: All processing happens on-device
- Multiple Controls: Security controls at every layer
- Fail Secure: System fails to secure state
- Redundancy: Multiple security mechanisms
- Layered Defense: Each layer provides additional protection
- Secure Configuration: Default settings are secure
- Minimal Attack Surface: Reduce exposed functionality
- Secure Coding: Follow secure coding practices
- Regular Updates: Keep system and dependencies updated
- Algorithm: Advanced Encryption Standard with 256-bit keys
- Mode: Galois/Counter Mode (GCM) for authenticated encryption
- Key Size: 256 bits
- IV Size: 96 bits
- Tag Size: 128 bits
- Algorithm: PBKDF2 (Password-Based Key Derivation Function 2)
- Hash Function: SHA-256
- Iterations: 100,000 (configurable)
- Salt Size: 256 bits
from cryptography.hazmat.primitives.ciphers.aead import AESGCM
from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
from cryptography.hazmat.primitives import hashes
import os
class BiometricEncryption:
"""AES-256-GCM encryption for biometric templates."""
def __init__(self):
self.algorithm = AESGCM
self.key_size = 32 # 256 bits
self.iv_size = 12 # 96 bits
self.tag_size = 16 # 128 bits
def derive_key(self, password: str, salt: bytes) -> bytes:
"""Derive encryption key from password."""
kdf = PBKDF2HMAC(
algorithm=hashes.SHA256(),
length=self.key_size,
salt=salt,
iterations=100000
)
return kdf.derive(password.encode())
def encrypt_template(self, template: bytes, password: str) -> bytes:
"""Encrypt biometric template."""
# Generate random salt and IV
salt = os.urandom(32)
iv = os.urandom(12)
# Derive key
key = self.derive_key(password, salt)
# Encrypt template
cipher = self.algorithm(key)
encrypted_data = cipher.encrypt(iv, template, None)
# Combine salt + IV + encrypted data
return salt + iv + encrypted_data
def decrypt_template(self, encrypted_data: bytes, password: str) -> bytes:
"""Decrypt biometric template."""
# Extract components
salt = encrypted_data[:32]
iv = encrypted_data[32:44]
ciphertext = encrypted_data[44:]
# Derive key
key = self.derive_key(password, salt)
# Decrypt template
cipher = self.algorithm(key)
return cipher.decrypt(iv, ciphertext, None)- One-Way Process: Original biometric data cannot be reconstructed
- Irreversible: Templates cannot be reversed to original images
- Unique: Each template is unique to the individual
- Stable: Templates remain consistent over time
@dataclass
class BiometricTemplate:
"""Secure biometric template structure."""
user_id: str
features: np.ndarray # 512-dimensional feature vector
quality_score: float
creation_time: datetime
template_id: str # Unique template identifier
version: int # Template format version-
Texture Analysis
- Analyze skin texture patterns
- Detect artificial materials
- Check for printing artifacts
-
Depth Analysis
- Use depth information if available
- Detect flat surfaces
- Verify 3D structure
-
Motion Analysis
- Detect natural eye movement
- Check for blinking patterns
- Verify head movement
-
Spectral Analysis
- Analyze light reflection
- Detect screen refresh patterns
- Check for camera artifacts
class LivenessDetector:
"""Multi-modal liveness detection."""
def __init__(self):
self.texture_model = load_texture_model()
self.depth_model = load_depth_model()
self.motion_model = load_motion_model()
def check_liveness(self, face_image: np.ndarray,
depth_map: Optional[np.ndarray] = None,
motion_sequence: Optional[List[np.ndarray]] = None) -> bool:
"""Comprehensive liveness check."""
scores = []
# Texture analysis
texture_score = self.texture_model.predict(face_image)
scores.append(texture_score)
# Depth analysis (if available)
if depth_map is not None:
depth_score = self.depth_model.predict(depth_map)
scores.append(depth_score)
# Motion analysis (if available)
if motion_sequence is not None:
motion_score = self.motion_model.predict(motion_sequence)
scores.append(motion_score)
# Combine scores
final_score = np.mean(scores)
return final_score > self.liveness_thresholdMaster Password
│
▼
PBKDF2-SHA256
│
▼
Derived Key
│
▼
Template Encryption Key
- Encrypted Storage: Keys stored encrypted at rest
- Memory Protection: Keys cleared from memory after use
- Access Control: Keys protected by OS-level permissions
- Key Rotation: Regular key rotation (configurable)
class TPMKeyManager:
"""TPM-based key management."""
def __init__(self):
self.tpm_available = self._check_tpm_availability()
def generate_key(self, key_id: str) -> bytes:
"""Generate key using TPM."""
if not self.tpm_available:
raise SecurityError("TPM not available")
# TPM key generation implementation
pass
def store_key(self, key_id: str, key: bytes) -> bool:
"""Store key in TPM."""
# TPM key storage implementation
pass- File Format: Custom encrypted format
- File Extension:
.enc(encrypted) - Directory Structure: Organized by user ID
- Access Permissions: OS-level file permissions
templates/
├── user1/
│ ├── template_001.enc
│ ├── template_002.enc
│ └── metadata.json
├── user2/
│ ├── template_001.enc
│ └── metadata.json
└── system/
├── config.enc
└── keys.enc
- Checksums: SHA-256 checksums for each template
- Digital Signatures: HMAC-based integrity verification
- Version Control: Template format versioning
- Backup Verification: Regular integrity checks
class TemplateIntegrity:
"""Template integrity verification."""
def verify_template(self, template_path: str, expected_checksum: str) -> bool:
"""Verify template integrity."""
with open(template_path, 'rb') as f:
data = f.read()
actual_checksum = hashlib.sha256(data).hexdigest()
return actual_checksum == expected_checksum
def generate_checksum(self, template_data: bytes) -> str:
"""Generate template checksum."""
return hashlib.sha256(template_data).hexdigest()- Skin Texture: Analyze natural skin patterns
- Material Detection: Detect artificial materials
- Print Quality: Check for printing artifacts
- Resolution Analysis: Verify image resolution
- 3D Structure: Verify facial 3D structure
- Depth Maps: Use depth information if available
- Surface Normals: Analyze surface orientation
- Curvature Analysis: Check facial curvature
- Eye Movement: Detect natural eye movement
- Blinking: Verify blinking patterns
- Head Movement: Check for natural head movement
- Facial Expressions: Detect micro-expressions
- Light Reflection: Analyze light reflection patterns
- Screen Detection: Detect screen refresh patterns
- Camera Artifacts: Check for camera-specific artifacts
- Frequency Analysis: Analyze frequency domain
class AdvancedLivenessDetector:
"""Advanced multi-modal liveness detection."""
def __init__(self):
self.models = {
'texture': TextureLivenessModel(),
'depth': DepthLivenessModel(),
'motion': MotionLivenessModel(),
'spectral': SpectralLivenessModel()
}
self.weights = {
'texture': 0.4,
'depth': 0.3,
'motion': 0.2,
'spectral': 0.1
}
def detect_liveness(self, data: Dict[str, Any]) -> LivenessResult:
"""Comprehensive liveness detection."""
scores = {}
# Texture analysis
if 'face_image' in data:
scores['texture'] = self.models['texture'].analyze(data['face_image'])
# Depth analysis
if 'depth_map' in data:
scores['depth'] = self.models['depth'].analyze(data['depth_map'])
# Motion analysis
if 'motion_sequence' in data:
scores['motion'] = self.models['motion'].analyze(data['motion_sequence'])
# Spectral analysis
if 'face_image' in data:
scores['spectral'] = self.models['spectral'].analyze(data['face_image'])
# Weighted combination
final_score = sum(scores[modality] * self.weights[modality]
for modality in scores)
return LivenessResult(
is_live=final_score > self.threshold,
confidence=final_score,
modality_scores=scores
)- Admin Access: Full system control
- User Access: Limited to own data
- Service Access: API access only
- Guest Access: Read-only access
- Template Access: Biometric template access
- Configuration Access: System configuration access
- Log Access: Audit log access
- API Access: REST API access
class AccessControl:
"""Role-based access control."""
ROLES = {
'admin': ['*'], # All permissions
'user': ['read_own_templates', 'update_own_profile'],
'service': ['api_access', 'read_config'],
'guest': ['read_public_info']
}
def check_permission(self, user_role: str, permission: str) -> bool:
"""Check if user has permission."""
if user_role not in self.ROLES:
return False
user_permissions = self.ROLES[user_role]
return '*' in user_permissions or permission in user_permissions- Authentication Events: Login attempts, successes, failures
- Enrollment Events: User enrollment, template creation
- Access Events: Data access, configuration changes
- Security Events: Security violations, suspicious activity
- System Events: System startup, shutdown, errors
{
"timestamp": "2025-01-04T10:30:00Z",
"event_type": "authentication_attempt",
"user_id": "john_doe",
"success": true,
"ip_address": "192.168.1.100",
"user_agent": "LockLess/1.0.0",
"additional_data": {
"confidence": 0.92,
"processing_time": 0.35
},
"security_level": "info"
}- Encryption: Sensitive log data encrypted
- Integrity: Log integrity verification
- Access Control: Restricted log access
- Retention: Configurable log retention
- Real-time Monitoring: Continuous log monitoring
- Anomaly Detection: Unusual pattern detection
- Alert System: Security alert generation
- Forensic Analysis: Post-incident analysis
- Windows Biometric Framework: Integration with WBF
- Windows Hello: Native Windows Hello support
- Credential Provider: Custom credential provider
- Group Policy: Enterprise policy support
- Real-time Protection: Windows Defender integration
- Threat Detection: Malware detection
- Behavioral Analysis: Suspicious behavior detection
- Quarantine: Automatic threat quarantine
- Mandatory Access Control: SELinux/AppArmor policies
- Process Isolation: Process-level security
- File System Protection: File system access control
- Network Security: Network access control
- Service Management: Systemd service integration
- Security Context: Secure service execution
- Resource Limits: Resource usage limits
- Dependency Management: Service dependencies
- Hardware Security Module: Android Keystore integration
- Key Attestation: Key attestation support
- Biometric Prompt: Android BiometricPrompt integration
- Fingerprint API: Fingerprint authentication support
- App Sandboxing: Application sandboxing
- Permission Model: Android permission system
- Verified Boot: Verified boot integration
- Security Updates: Automatic security updates
- Security Functions: Test security-critical functions
- Encryption/Decryption: Test cryptographic operations
- Input Validation: Test input validation
- Error Handling: Test error conditions
- End-to-End Security: Test complete security flows
- API Security: Test API security
- Database Security: Test data storage security
- Network Security: Test network communications
- Vulnerability Assessment: Identify security vulnerabilities
- Exploit Testing: Test for exploitable vulnerabilities
- Social Engineering: Test human factors
- Physical Security: Test physical access controls
- Accuracy Testing: Test biometric accuracy
- Spoofing Resistance: Test anti-spoofing measures
- Performance Testing: Test security performance
- Compatibility Testing: Test platform compatibility
class SecurityTestSuite:
"""Comprehensive security test suite."""
def test_encryption_security(self):
"""Test encryption implementation."""
# Test key derivation
# Test encryption/decryption
# Test key management
pass
def test_template_protection(self):
"""Test template protection."""
# Test template encryption
# Test template integrity
# Test template access control
pass
def test_liveness_detection(self):
"""Test liveness detection."""
# Test anti-spoofing measures
# Test presentation attack detection
# Test false acceptance/rejection rates
pass
def test_access_control(self):
"""Test access control."""
# Test role-based access control
# Test permission enforcement
# Test privilege escalation prevention
pass- Information Security Management: ISMS implementation
- Risk Management: Security risk assessment
- Security Controls: Implementation of security controls
- Continuous Improvement: Ongoing security improvement
- Identify: Asset and risk identification
- Protect: Security control implementation
- Detect: Threat detection capabilities
- Respond: Incident response procedures
- Recover: Recovery and restoration procedures
- Data Protection: Personal data protection
- Privacy by Design: Privacy-first design
- Data Subject Rights: User rights implementation
- Data Breach Notification: Breach notification procedures
- FIDO2: WebAuthn and CTAP support
- UAF: Universal Authentication Framework
- U2F: Universal Second Factor
- Biometric Standards: Biometric authentication standards
class ComplianceManager:
"""Compliance management system."""
def __init__(self):
self.standards = {
'iso27001': ISO27001Compliance(),
'nist': NISTCompliance(),
'gdpr': GDPRCompliance(),
'fido': FIDOCompliance()
}
def check_compliance(self, standard: str) -> ComplianceResult:
"""Check compliance with specific standard."""
if standard not in self.standards:
raise ValueError(f"Unknown standard: {standard}")
return self.standards[standard].check_compliance()
def generate_compliance_report(self) -> ComplianceReport:
"""Generate comprehensive compliance report."""
results = {}
for standard, checker in self.standards.items():
results[standard] = checker.check_compliance()
return ComplianceReport(results)- Input Validation: Validate all inputs
- Output Encoding: Encode all outputs
- Error Handling: Secure error handling
- Memory Management: Secure memory management
- Security Review: Security-focused code review
- Static Analysis: Automated static analysis
- Dynamic Analysis: Runtime security analysis
- Dependency Scanning: Third-party dependency scanning
- Security Testing: Comprehensive security testing
- Penetration Testing: Regular penetration testing
- Vulnerability Scanning: Automated vulnerability scanning
- Red Team Exercises: Simulated attack exercises
- Secure Defaults: Secure default configurations
- Configuration Validation: Validate all configurations
- Change Management: Controlled configuration changes
- Documentation: Comprehensive configuration documentation
- Security Monitoring: Continuous security monitoring
- Log Management: Centralized log management
- Alert System: Automated security alerts
- Incident Response: Rapid incident response
- Principle of Least Privilege: Minimum required permissions
- Regular Access Reviews: Periodic access reviews
- Multi-Factor Authentication: MFA for all access
- Session Management: Secure session management
- Regular Updates: Regular security updates
- Patch Management: Systematic patch management
- Vulnerability Management: Vulnerability tracking and remediation
- Dependency Updates: Third-party dependency updates
- Secure Backups: Encrypted backup storage
- Recovery Testing: Regular recovery testing
- Disaster Recovery: Comprehensive disaster recovery plan
- Business Continuity: Business continuity planning
- Security Training: Regular security training
- Awareness Programs: Security awareness programs
- Incident Response Training: Incident response training
- Phishing Simulation: Phishing simulation exercises
This security architecture ensures that LockLess provides enterprise-grade security while maintaining usability and performance. Regular security assessments and updates ensure the system remains secure against evolving threats.