Skip to content

Security: SpicychieF05/LockLess

Security

docs/SECURITY.md

LockLess Security Architecture

This document outlines the comprehensive security architecture of the LockLess biometric authentication system.

Table of Contents

Security Overview

LockLess implements a multi-layered security architecture designed to protect biometric data and ensure system integrity. The system follows the principle of "defense in depth" with multiple security controls at each layer.

Security Layers

┌─────────────────────────────────────────────────────────┐
│                    Application Layer                    │
│  • Input Validation  • Access Control  • Audit Logging │
├─────────────────────────────────────────────────────────┤
│                    Biometric Layer                      │
│  • Liveness Detection • Anti-Spoofing  • Quality Check │
├─────────────────────────────────────────────────────────┤
│                    Encryption Layer                     │
│  • AES-256 Encryption • Key Derivation • Secure Storage│
├─────────────────────────────────────────────────────────┤
│                    Platform Layer                       │
│  • TPM Integration   • Secure Boot     • Memory Protection│
└─────────────────────────────────────────────────────────┘

Threat Model

Threat Categories

1. Data Exfiltration

  • Threat: Unauthorized access to biometric templates
  • Mitigation: AES-256 encryption, secure key management
  • Detection: Audit logging, access monitoring

2. Spoofing Attacks

  • Threat: Presentation attacks using photos, videos, or masks
  • Mitigation: Multi-modal liveness detection
  • Detection: Real-time anti-spoofing algorithms

3. Replay Attacks

  • Threat: Replaying captured biometric data
  • Mitigation: Challenge-response mechanisms, timestamp validation
  • Detection: Session management, nonce validation

4. Template Inversion

  • Threat: Reconstructing original biometric data from templates
  • Mitigation: One-way feature extraction, template protection
  • Detection: Template integrity checks

5. Side-Channel Attacks

  • Threat: Extracting information through timing or power analysis
  • Mitigation: Constant-time algorithms, secure coding practices
  • Detection: Performance monitoring

6. Privilege Escalation

  • Threat: Gaining unauthorized system access
  • Mitigation: Principle of least privilege, access controls
  • Detection: Audit logging, anomaly detection

Security Principles

1. Zero Trust Architecture

  • Never Trust, Always Verify: All access requests are verified
  • Least Privilege: Users have minimum required permissions
  • Continuous Monitoring: All activities are logged and monitored

2. Privacy by Design

  • Data Minimization: Only collect necessary biometric data
  • Purpose Limitation: Use data only for intended purposes
  • Retention Limitation: Delete data when no longer needed
  • Local Processing: All processing happens on-device

3. Defense in Depth

  • Multiple Controls: Security controls at every layer
  • Fail Secure: System fails to secure state
  • Redundancy: Multiple security mechanisms
  • Layered Defense: Each layer provides additional protection

4. Secure by Default

  • Secure Configuration: Default settings are secure
  • Minimal Attack Surface: Reduce exposed functionality
  • Secure Coding: Follow secure coding practices
  • Regular Updates: Keep system and dependencies updated

Encryption Architecture

Encryption Standards

AES-256-GCM

  • Algorithm: Advanced Encryption Standard with 256-bit keys
  • Mode: Galois/Counter Mode (GCM) for authenticated encryption
  • Key Size: 256 bits
  • IV Size: 96 bits
  • Tag Size: 128 bits

Key Derivation

  • Algorithm: PBKDF2 (Password-Based Key Derivation Function 2)
  • Hash Function: SHA-256
  • Iterations: 100,000 (configurable)
  • Salt Size: 256 bits

Encryption Implementation

from cryptography.hazmat.primitives.ciphers.aead import AESGCM
from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
from cryptography.hazmat.primitives import hashes
import os

class BiometricEncryption:
    """AES-256-GCM encryption for biometric templates."""

    def __init__(self):
        self.algorithm = AESGCM
        self.key_size = 32  # 256 bits
        self.iv_size = 12   # 96 bits
        self.tag_size = 16  # 128 bits

    def derive_key(self, password: str, salt: bytes) -> bytes:
        """Derive encryption key from password."""
        kdf = PBKDF2HMAC(
            algorithm=hashes.SHA256(),
            length=self.key_size,
            salt=salt,
            iterations=100000
        )
        return kdf.derive(password.encode())

    def encrypt_template(self, template: bytes, password: str) -> bytes:
        """Encrypt biometric template."""
        # Generate random salt and IV
        salt = os.urandom(32)
        iv = os.urandom(12)

        # Derive key
        key = self.derive_key(password, salt)

        # Encrypt template
        cipher = self.algorithm(key)
        encrypted_data = cipher.encrypt(iv, template, None)

        # Combine salt + IV + encrypted data
        return salt + iv + encrypted_data

    def decrypt_template(self, encrypted_data: bytes, password: str) -> bytes:
        """Decrypt biometric template."""
        # Extract components
        salt = encrypted_data[:32]
        iv = encrypted_data[32:44]
        ciphertext = encrypted_data[44:]

        # Derive key
        key = self.derive_key(password, salt)

        # Decrypt template
        cipher = self.algorithm(key)
        return cipher.decrypt(iv, ciphertext, None)

Biometric Security

Template Protection

Feature Extraction

  • One-Way Process: Original biometric data cannot be reconstructed
  • Irreversible: Templates cannot be reversed to original images
  • Unique: Each template is unique to the individual
  • Stable: Templates remain consistent over time

Template Format

@dataclass
class BiometricTemplate:
    """Secure biometric template structure."""
    user_id: str
    features: np.ndarray  # 512-dimensional feature vector
    quality_score: float
    creation_time: datetime
    template_id: str  # Unique template identifier
    version: int  # Template format version

Anti-Spoofing Measures

Multi-Modal Liveness Detection

  1. Texture Analysis

    • Analyze skin texture patterns
    • Detect artificial materials
    • Check for printing artifacts
  2. Depth Analysis

    • Use depth information if available
    • Detect flat surfaces
    • Verify 3D structure
  3. Motion Analysis

    • Detect natural eye movement
    • Check for blinking patterns
    • Verify head movement
  4. Spectral Analysis

    • Analyze light reflection
    • Detect screen refresh patterns
    • Check for camera artifacts
class LivenessDetector:
    """Multi-modal liveness detection."""

    def __init__(self):
        self.texture_model = load_texture_model()
        self.depth_model = load_depth_model()
        self.motion_model = load_motion_model()

    def check_liveness(self, face_image: np.ndarray,
                      depth_map: Optional[np.ndarray] = None,
                      motion_sequence: Optional[List[np.ndarray]] = None) -> bool:
        """Comprehensive liveness check."""
        scores = []

        # Texture analysis
        texture_score = self.texture_model.predict(face_image)
        scores.append(texture_score)

        # Depth analysis (if available)
        if depth_map is not None:
            depth_score = self.depth_model.predict(depth_map)
            scores.append(depth_score)

        # Motion analysis (if available)
        if motion_sequence is not None:
            motion_score = self.motion_model.predict(motion_sequence)
            scores.append(motion_score)

        # Combine scores
        final_score = np.mean(scores)
        return final_score > self.liveness_threshold

Key Management

Key Hierarchy

Master Password
       │
       ▼
   PBKDF2-SHA256
       │
       ▼
   Derived Key
       │
       ▼
   Template Encryption Key

Key Storage

Secure Key Storage

  • Encrypted Storage: Keys stored encrypted at rest
  • Memory Protection: Keys cleared from memory after use
  • Access Control: Keys protected by OS-level permissions
  • Key Rotation: Regular key rotation (configurable)

TPM Integration (Optional)

class TPMKeyManager:
    """TPM-based key management."""

    def __init__(self):
        self.tpm_available = self._check_tpm_availability()

    def generate_key(self, key_id: str) -> bytes:
        """Generate key using TPM."""
        if not self.tpm_available:
            raise SecurityError("TPM not available")

        # TPM key generation implementation
        pass

    def store_key(self, key_id: str, key: bytes) -> bool:
        """Store key in TPM."""
        # TPM key storage implementation
        pass

Template Storage

Storage Architecture

Encrypted File System

  • File Format: Custom encrypted format
  • File Extension: .enc (encrypted)
  • Directory Structure: Organized by user ID
  • Access Permissions: OS-level file permissions

Storage Structure

templates/
├── user1/
│   ├── template_001.enc
│   ├── template_002.enc
│   └── metadata.json
├── user2/
│   ├── template_001.enc
│   └── metadata.json
└── system/
    ├── config.enc
    └── keys.enc

Template Integrity

Integrity Verification

  • Checksums: SHA-256 checksums for each template
  • Digital Signatures: HMAC-based integrity verification
  • Version Control: Template format versioning
  • Backup Verification: Regular integrity checks
class TemplateIntegrity:
    """Template integrity verification."""

    def verify_template(self, template_path: str, expected_checksum: str) -> bool:
        """Verify template integrity."""
        with open(template_path, 'rb') as f:
            data = f.read()

        actual_checksum = hashlib.sha256(data).hexdigest()
        return actual_checksum == expected_checksum

    def generate_checksum(self, template_data: bytes) -> str:
        """Generate template checksum."""
        return hashlib.sha256(template_data).hexdigest()

Liveness Detection

Anti-Spoofing Techniques

1. Texture Analysis

  • Skin Texture: Analyze natural skin patterns
  • Material Detection: Detect artificial materials
  • Print Quality: Check for printing artifacts
  • Resolution Analysis: Verify image resolution

2. Depth Analysis

  • 3D Structure: Verify facial 3D structure
  • Depth Maps: Use depth information if available
  • Surface Normals: Analyze surface orientation
  • Curvature Analysis: Check facial curvature

3. Motion Analysis

  • Eye Movement: Detect natural eye movement
  • Blinking: Verify blinking patterns
  • Head Movement: Check for natural head movement
  • Facial Expressions: Detect micro-expressions

4. Spectral Analysis

  • Light Reflection: Analyze light reflection patterns
  • Screen Detection: Detect screen refresh patterns
  • Camera Artifacts: Check for camera-specific artifacts
  • Frequency Analysis: Analyze frequency domain

Liveness Detection Implementation

class AdvancedLivenessDetector:
    """Advanced multi-modal liveness detection."""

    def __init__(self):
        self.models = {
            'texture': TextureLivenessModel(),
            'depth': DepthLivenessModel(),
            'motion': MotionLivenessModel(),
            'spectral': SpectralLivenessModel()
        }
        self.weights = {
            'texture': 0.4,
            'depth': 0.3,
            'motion': 0.2,
            'spectral': 0.1
        }

    def detect_liveness(self, data: Dict[str, Any]) -> LivenessResult:
        """Comprehensive liveness detection."""
        scores = {}

        # Texture analysis
        if 'face_image' in data:
            scores['texture'] = self.models['texture'].analyze(data['face_image'])

        # Depth analysis
        if 'depth_map' in data:
            scores['depth'] = self.models['depth'].analyze(data['depth_map'])

        # Motion analysis
        if 'motion_sequence' in data:
            scores['motion'] = self.models['motion'].analyze(data['motion_sequence'])

        # Spectral analysis
        if 'face_image' in data:
            scores['spectral'] = self.models['spectral'].analyze(data['face_image'])

        # Weighted combination
        final_score = sum(scores[modality] * self.weights[modality]
                         for modality in scores)

        return LivenessResult(
            is_live=final_score > self.threshold,
            confidence=final_score,
            modality_scores=scores
        )

Access Control

Authentication Levels

1. System Access

  • Admin Access: Full system control
  • User Access: Limited to own data
  • Service Access: API access only
  • Guest Access: Read-only access

2. Data Access

  • Template Access: Biometric template access
  • Configuration Access: System configuration access
  • Log Access: Audit log access
  • API Access: REST API access

Role-Based Access Control (RBAC)

class AccessControl:
    """Role-based access control."""

    ROLES = {
        'admin': ['*'],  # All permissions
        'user': ['read_own_templates', 'update_own_profile'],
        'service': ['api_access', 'read_config'],
        'guest': ['read_public_info']
    }

    def check_permission(self, user_role: str, permission: str) -> bool:
        """Check if user has permission."""
        if user_role not in self.ROLES:
            return False

        user_permissions = self.ROLES[user_role]
        return '*' in user_permissions or permission in user_permissions

Audit Logging

Security Events

Event Types

  • Authentication Events: Login attempts, successes, failures
  • Enrollment Events: User enrollment, template creation
  • Access Events: Data access, configuration changes
  • Security Events: Security violations, suspicious activity
  • System Events: System startup, shutdown, errors

Log Format

{
  "timestamp": "2025-01-04T10:30:00Z",
  "event_type": "authentication_attempt",
  "user_id": "john_doe",
  "success": true,
  "ip_address": "192.168.1.100",
  "user_agent": "LockLess/1.0.0",
  "additional_data": {
    "confidence": 0.92,
    "processing_time": 0.35
  },
  "security_level": "info"
}

Log Security

Log Protection

  • Encryption: Sensitive log data encrypted
  • Integrity: Log integrity verification
  • Access Control: Restricted log access
  • Retention: Configurable log retention

Log Analysis

  • Real-time Monitoring: Continuous log monitoring
  • Anomaly Detection: Unusual pattern detection
  • Alert System: Security alert generation
  • Forensic Analysis: Post-incident analysis

Platform Security

Windows Security

Windows Hello Integration

  • Windows Biometric Framework: Integration with WBF
  • Windows Hello: Native Windows Hello support
  • Credential Provider: Custom credential provider
  • Group Policy: Enterprise policy support

Windows Defender Integration

  • Real-time Protection: Windows Defender integration
  • Threat Detection: Malware detection
  • Behavioral Analysis: Suspicious behavior detection
  • Quarantine: Automatic threat quarantine

Linux Security

SELinux/AppArmor Integration

  • Mandatory Access Control: SELinux/AppArmor policies
  • Process Isolation: Process-level security
  • File System Protection: File system access control
  • Network Security: Network access control

Systemd Integration

  • Service Management: Systemd service integration
  • Security Context: Secure service execution
  • Resource Limits: Resource usage limits
  • Dependency Management: Service dependencies

Android Security

Android Keystore Integration

  • Hardware Security Module: Android Keystore integration
  • Key Attestation: Key attestation support
  • Biometric Prompt: Android BiometricPrompt integration
  • Fingerprint API: Fingerprint authentication support

Android Security Features

  • App Sandboxing: Application sandboxing
  • Permission Model: Android permission system
  • Verified Boot: Verified boot integration
  • Security Updates: Automatic security updates

Security Testing

Testing Framework

1. Unit Testing

  • Security Functions: Test security-critical functions
  • Encryption/Decryption: Test cryptographic operations
  • Input Validation: Test input validation
  • Error Handling: Test error conditions

2. Integration Testing

  • End-to-End Security: Test complete security flows
  • API Security: Test API security
  • Database Security: Test data storage security
  • Network Security: Test network communications

3. Penetration Testing

  • Vulnerability Assessment: Identify security vulnerabilities
  • Exploit Testing: Test for exploitable vulnerabilities
  • Social Engineering: Test human factors
  • Physical Security: Test physical access controls

4. Biometric Testing

  • Accuracy Testing: Test biometric accuracy
  • Spoofing Resistance: Test anti-spoofing measures
  • Performance Testing: Test security performance
  • Compatibility Testing: Test platform compatibility

Security Test Suite

class SecurityTestSuite:
    """Comprehensive security test suite."""

    def test_encryption_security(self):
        """Test encryption implementation."""
        # Test key derivation
        # Test encryption/decryption
        # Test key management
        pass

    def test_template_protection(self):
        """Test template protection."""
        # Test template encryption
        # Test template integrity
        # Test template access control
        pass

    def test_liveness_detection(self):
        """Test liveness detection."""
        # Test anti-spoofing measures
        # Test presentation attack detection
        # Test false acceptance/rejection rates
        pass

    def test_access_control(self):
        """Test access control."""
        # Test role-based access control
        # Test permission enforcement
        # Test privilege escalation prevention
        pass

Compliance

Security Standards

ISO/IEC 27001

  • Information Security Management: ISMS implementation
  • Risk Management: Security risk assessment
  • Security Controls: Implementation of security controls
  • Continuous Improvement: Ongoing security improvement

NIST Cybersecurity Framework

  • Identify: Asset and risk identification
  • Protect: Security control implementation
  • Detect: Threat detection capabilities
  • Respond: Incident response procedures
  • Recover: Recovery and restoration procedures

GDPR Compliance

  • Data Protection: Personal data protection
  • Privacy by Design: Privacy-first design
  • Data Subject Rights: User rights implementation
  • Data Breach Notification: Breach notification procedures

FIDO Alliance Standards

  • FIDO2: WebAuthn and CTAP support
  • UAF: Universal Authentication Framework
  • U2F: Universal Second Factor
  • Biometric Standards: Biometric authentication standards

Compliance Implementation

class ComplianceManager:
    """Compliance management system."""

    def __init__(self):
        self.standards = {
            'iso27001': ISO27001Compliance(),
            'nist': NISTCompliance(),
            'gdpr': GDPRCompliance(),
            'fido': FIDOCompliance()
        }

    def check_compliance(self, standard: str) -> ComplianceResult:
        """Check compliance with specific standard."""
        if standard not in self.standards:
            raise ValueError(f"Unknown standard: {standard}")

        return self.standards[standard].check_compliance()

    def generate_compliance_report(self) -> ComplianceReport:
        """Generate comprehensive compliance report."""
        results = {}
        for standard, checker in self.standards.items():
            results[standard] = checker.check_compliance()

        return ComplianceReport(results)

Security Best Practices

Development Best Practices

1. Secure Coding

  • Input Validation: Validate all inputs
  • Output Encoding: Encode all outputs
  • Error Handling: Secure error handling
  • Memory Management: Secure memory management

2. Code Review

  • Security Review: Security-focused code review
  • Static Analysis: Automated static analysis
  • Dynamic Analysis: Runtime security analysis
  • Dependency Scanning: Third-party dependency scanning

3. Testing

  • Security Testing: Comprehensive security testing
  • Penetration Testing: Regular penetration testing
  • Vulnerability Scanning: Automated vulnerability scanning
  • Red Team Exercises: Simulated attack exercises

Operational Best Practices

1. Configuration Management

  • Secure Defaults: Secure default configurations
  • Configuration Validation: Validate all configurations
  • Change Management: Controlled configuration changes
  • Documentation: Comprehensive configuration documentation

2. Monitoring and Logging

  • Security Monitoring: Continuous security monitoring
  • Log Management: Centralized log management
  • Alert System: Automated security alerts
  • Incident Response: Rapid incident response

3. Access Management

  • Principle of Least Privilege: Minimum required permissions
  • Regular Access Reviews: Periodic access reviews
  • Multi-Factor Authentication: MFA for all access
  • Session Management: Secure session management

Maintenance Best Practices

1. Updates and Patches

  • Regular Updates: Regular security updates
  • Patch Management: Systematic patch management
  • Vulnerability Management: Vulnerability tracking and remediation
  • Dependency Updates: Third-party dependency updates

2. Backup and Recovery

  • Secure Backups: Encrypted backup storage
  • Recovery Testing: Regular recovery testing
  • Disaster Recovery: Comprehensive disaster recovery plan
  • Business Continuity: Business continuity planning

3. Training and Awareness

  • Security Training: Regular security training
  • Awareness Programs: Security awareness programs
  • Incident Response Training: Incident response training
  • Phishing Simulation: Phishing simulation exercises

This security architecture ensures that LockLess provides enterprise-grade security while maintaining usability and performance. Regular security assessments and updates ensure the system remains secure against evolving threats.

There aren’t any published security advisories