Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
62 changes: 62 additions & 0 deletions sdks/opik_optimizer/scripts/multimodal_example.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
from opik_optimizer.datasets import driving_hazard_50
from opik_optimizer import ChatPrompt, HierarchicalReflectiveOptimizer
from opik.evaluation.metrics import LevenshteinRatio
from opik.evaluation.metrics.score_result import ScoreResult

from typing import Any

# Import the dataset
dataset = driving_hazard_50(test_mode=True)


# Define the metric to optimize on
def levenshtein_ratio(dataset_item: dict[str, Any], llm_output: str) -> ScoreResult:
metric = LevenshteinRatio()
metric_score = metric.score(reference=dataset_item["hazard"], output=llm_output)
return ScoreResult(
value=metric_score.value,
name=metric_score.name,
reason=f"Levenshtein ratio between `{dataset_item['hazard']}` and `{llm_output}` is `{metric_score.value}`.",
)


# Define the prompt to optimize
system_prompt = """You are an expert driving safety assistant specialized in hazard detection.

Your task is to analyze dashcam images and identify potential hazards that a driver should be aware of.

For each image:
1. Carefully examine the visual scene
2. Identify any potential hazards (pedestrians, vehicles, road conditions, obstacles, etc.)
3. Assess the urgency and severity of each hazard
4. Provide a clear, specific description of the hazard

Be precise and actionable in your hazard descriptions. Focus on safety-critical information."""

prompt = ChatPrompt(
messages=[
{"role": "system", "content": system_prompt},
{
"role": "user",
"content": [
{"type": "text", "text": "{question}"},
{
"type": "image_url",
"image_url": {
"url": "{image}",
},
},
],
},
],
)

# Initialize the Hierarchical Reflective Optimizer
optimizer = HierarchicalReflectiveOptimizer(model="openai/gpt-4o")

# Run optimization
optimization_result = optimizer.optimize_prompt(
prompt=prompt, dataset=dataset, metric=levenshtein_ratio
)

optimization_result.display()
8 changes: 8 additions & 0 deletions sdks/opik_optimizer/src/opik_optimizer/datasets/__init__.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,10 @@
from .ai2_arc import ai2_arc
from .cnn_dailymail import cnn_dailymail
from .driving_hazard import (
driving_hazard_50,
driving_hazard_100,
driving_hazard_test_split,
)
from .election_questions import election_questions
from .gsm8k import gsm8k
from .halu_eval import halu_eval_300
Expand All @@ -11,6 +16,9 @@
from .truthful_qa import truthful_qa

__all__ = [
"driving_hazard_50",
"driving_hazard_100",
"driving_hazard_test_split",
"hotpot_300",
"hotpot_500",
"halu_eval_300",
Expand Down
294 changes: 294 additions & 0 deletions sdks/opik_optimizer/src/opik_optimizer/datasets/driving_hazard.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,294 @@
"""
DHPR (Driving-Hazard-Prediction-and-Reasoning) dataset loader.

This module provides functions to load the DHPR dataset from HuggingFace
with full multimodal support, including base64-encoded images in structured
content format (OpenAI style).

Dataset: https://huggingface.co/datasets/DHPR/Driving-Hazard-Prediction-and-Reasoning
"""

from io import BytesIO
import base64

import opik
from typing import Any
from PIL import Image


def driving_hazard_50(
test_mode: bool = False,
max_image_size: tuple[int, int] | None = (512, 384),
image_quality: int = 60,
) -> opik.Dataset:
"""
Dataset containing 50 samples from the DHPR driving hazard dataset.

Each sample includes:
- question: The hazard detection question
- image_content: Structured content with text and base64-encoded image
- hazard: Expected hazard description (ground truth)
- question_id: Unique identifier

Args:
test_mode: If True, creates a test dataset with only 5 samples
max_image_size: Maximum (width, height) for images. Default (512, 384)
gives ~15-20k tokens per image. Use None to keep original size.
Examples: (400, 300) for smaller, (800, 600) for larger.
image_quality: JPEG compression quality (1-100). Default 60 balances
quality and size. Lower = smaller files. Higher = better quality.
Examples: 40-50 (very small), 60-70 (balanced), 85+ (high quality)

Returns:
opik.Dataset with multimodal hazard detection samples

Example:
>>> # Default settings (recommended for most cases)
>>> dataset = driving_hazard_50()
>>>
>>> # Smaller images for low context
>>> dataset = driving_hazard_50(max_image_size=(400, 300), image_quality=50)
>>>
>>> # Higher quality for detailed analysis
>>> dataset = driving_hazard_50(max_image_size=(800, 600), image_quality=85)
"""
return _load_dhpr_dataset(
dataset_name_prefix="driving_hazard_50",
nb_items=50,
test_mode=test_mode,
split="train",
max_image_size=max_image_size,
image_quality=image_quality,
)


def driving_hazard_100(
test_mode: bool = False,
max_image_size: tuple[int, int] | None = (512, 384),
image_quality: int = 60,
) -> opik.Dataset:
"""
Dataset containing 100 samples from the DHPR driving hazard dataset.

Args:
test_mode: If True, creates a test dataset with only 5 samples
max_image_size: Maximum (width, height) for images. Default (512, 384)
gives ~15-20k tokens per image. Use None to keep original size.
image_quality: JPEG compression quality (1-100). Default 60 balances
quality and size. Lower = smaller files. Higher = better quality.

Returns:
opik.Dataset with multimodal hazard detection samples
"""
return _load_dhpr_dataset(
dataset_name_prefix="driving_hazard_100",
nb_items=100,
test_mode=test_mode,
split="train",
max_image_size=max_image_size,
image_quality=image_quality,
)


def driving_hazard_test_split(
test_mode: bool = False,
max_image_size: tuple[int, int] | None = (512, 384),
image_quality: int = 60,
) -> opik.Dataset:
"""
Dataset containing samples from the DHPR test split.

Args:
test_mode: If True, loads only 5 samples; otherwise loads 100 samples
max_image_size: Maximum (width, height) for images. Default (512, 384)
gives ~15-20k tokens per image. Use None to keep original size.
image_quality: JPEG compression quality (1-100). Default 60 balances
quality and size. Lower = smaller files. Higher = better quality.

Returns:
opik.Dataset with multimodal hazard detection samples
"""
return _load_dhpr_dataset(
dataset_name_prefix="driving_hazard_test",
nb_items=100,
test_mode=test_mode,
split="test",
max_image_size=max_image_size,
image_quality=image_quality,
)


def _load_dhpr_dataset(
dataset_name_prefix: str,
nb_items: int,
test_mode: bool,
split: str = "train",
max_image_size: tuple[int, int] | None = (512, 384),
image_quality: int = 60,
) -> opik.Dataset:
"""
Internal function to load DHPR dataset with multimodal support.

Args:
dataset_name_prefix: Prefix for the dataset name
nb_items: Number of items to load
test_mode: Whether to create a test dataset
split: Dataset split to load ("train", "test", or "val")
max_image_size: Maximum image size (width, height) for resizing.
Set to None to keep original size. Default (512, 384).
image_quality: JPEG compression quality (1-100). Default 60.

Returns:
opik.Dataset with loaded and processed samples
"""
# Adjust for test mode
dataset_name = (
f"{dataset_name_prefix}" if not test_mode else f"{dataset_name_prefix}_test"
)
actual_nb_items = nb_items if not test_mode else 5

# Get or create dataset
client = opik.Opik()
dataset = client.get_or_create_dataset(dataset_name)

# Check if dataset already has the correct number of items
items = dataset.get_items()
if len(items) == actual_nb_items:
return dataset
elif len(items) != 0:
raise ValueError(
f"Dataset {dataset_name} contains {len(items)} items, expected {actual_nb_items}. "
f"We recommend deleting the dataset and re-creating it."
)

# Load from HuggingFace and process
if len(items) == 0:
import datasets as ds

# Load DHPR dataset from HuggingFace
download_config = ds.DownloadConfig(download_desc=False, disable_tqdm=True)
ds.disable_progress_bar()

try:
hf_dataset = ds.load_dataset(
"DHPR/Driving-Hazard-Prediction-and-Reasoning",
streaming=True,
download_config=download_config,
trust_remote_code=True, # May be needed for custom dataset scripts
)
except Exception as e:
# Fallback: try without streaming if streaming fails
ds.enable_progress_bar()
raise ValueError(
f"Failed to load DHPR dataset: {e}. "
f"Make sure you have internet connection and the dataset is accessible."
)

# Process items
data: list[dict[str, Any]] = []

for i, item in enumerate(hf_dataset[split]):
if i >= actual_nb_items:
break

processed_item = _process_dhpr_item(
item=item,
max_image_size=max_image_size,
image_quality=image_quality,
)
data.append(processed_item)

ds.enable_progress_bar()

# Insert into Opik dataset
dataset.insert(data)

return dataset


def _encode_pil_to_base64_uri(
image: Image.Image, format: str = "PNG", quality: int = 85
) -> str:
"""
Encode a PIL Image to a base64 data URI.

Args:
image: PIL Image object
format: Image format (PNG, JPEG, etc.)
quality: JPEG quality (1-100), ignored for PNG

Returns:
Base64 data URI string (e.g., "...")

Example:
>>> from PIL import Image
>>> img = Image.open("photo.jpg")
>>> data_uri = encode_pil_to_base64_uri(img)
>>> data_uri[:30]
''
"""
buffer = BytesIO()

# Save with appropriate parameters
save_kwargs: dict[str, Any] = {"format": format}
if format.upper() == "JPEG":
save_kwargs["quality"] = quality
save_kwargs["optimize"] = True

image.save(buffer, **save_kwargs)

# Encode to base64
encoded = base64.b64encode(buffer.getvalue()).decode("utf-8")

# Determine MIME type
mime_type = f"image/{format.lower()}"
if format.upper() == "JPEG":
mime_type = "image/jpeg"

return f"data:{mime_type};base64,{encoded}"


def _process_dhpr_item(
item: dict[str, Any],
max_image_size: tuple[int, int] | None,
image_quality: int,
) -> dict[str, Any]:
"""
Process a single DHPR item to create multimodal content.

Args:
item: Raw item from HuggingFace dataset
max_image_size: Maximum image size for resizing
image_quality: JPEG compression quality (1-100)

Returns:
Processed item with structured content
"""
# Extract fields
question_id = item.get("question_id")
question = item.get("question")
hazard = item.get("hazard")
pil_image: Image.Image = item.get("image")

# Resize if needed
if max_image_size:
pil_image.thumbnail(max_image_size, Image.Resampling.LANCZOS)

# Encode to base64 data URI
image_base64 = _encode_pil_to_base64_uri(
image=pil_image,
format="JPEG",
quality=image_quality,
)

# Return processed item
# The optimizer will use:
# - question: As the text prompt
# - image_content: As multimodal structured content
# - hazard: As the expected output for evaluation
return {
"question_id": question_id,
"question": question,
"image": image_base64, # Direct image URI for reference
"hazard": hazard, # Expected output (ground truth)
}
Loading
Loading