A powerful command-line tool for data processing and analysis
undatum (pronounced un-da-tum) is a modern CLI tool designed to make working with large datasets as simple and efficient as possible. It provides a unified interface for converting, analyzing, validating, and transforming data across multiple formats.
- Multi-format support: CSV, JSON Lines, BSON, XML, XLS, XLSX, Parquet, AVRO, ORC
- Compression support: ZIP, XZ, GZ, BZ2, ZSTD
- Low memory footprint: Streams data for efficient processing of large files
- Automatic detection: Encoding, delimiters, and file types
- Data validation: Built-in rules for emails, URLs, and custom validators
- Advanced statistics: Field analysis, frequency calculations, and date detection
- Flexible filtering: Query and filter data using expressions
- Schema generation: Automatic schema detection and generation
- Database ingestion: Ingest data to MongoDB, PostgreSQL, DuckDB, MySQL, SQLite, and Elasticsearch with retry logic and error handling
- AI-powered documentation: Automatic field and dataset descriptions using multiple LLM providers (OpenAI, OpenRouter, Ollama, LM Studio, Perplexity) with structured JSON output
WORKFLOW_GUIDE.mdfor contributor workflow and OpenSpec usageopenspec/for change proposals, specs, and implementation summariesexamples/doc/for dataset documentation output samples
pip install --upgrade pip setuptools
pip install undatumDependencies are declared in pyproject.toml and will be installed automatically by modern versions of pip (23+). If you see missing-module errors after installation, upgrade pip and retry.
- Python 3.9 or greater
python -m pip install --upgrade pip setuptools wheel
python -m pip install .
# or build distributables
python setup.py sdist bdist_wheel# Get file headers
undatum headers data.jsonl
# Analyze file structure
undatum analyze data.jsonl
# Generate dataset documentation
undatum doc data.jsonl --format markdown --output docs/dataset.md
# Get statistics
undatum stats data.csv
# Convert XML to JSON Lines
undatum convert --tagname item data.xml data.jsonl
# Get unique values
undatum uniq --fields category data.jsonl
# Calculate frequency
undatum frequency --fields status data.csv
# Count rows
undatum count data.csv
# View first 10 rows
undatum head data.jsonl
# View last 10 rows
undatum tail data.csv
# Display formatted table
undatum table data.csv --limit 20Analyzes data files and provides human-readable insights about structure, encoding, fields, and data types. With --autodoc, automatically generates field descriptions and dataset summaries using AI.
# Basic analysis
undatum analyze data.jsonl
# With AI-powered documentation
undatum analyze data.jsonl --autodoc
# Using specific AI provider
undatum analyze data.jsonl --autodoc --ai-provider openai --ai-model gpt-4o-mini
# Output to file
undatum analyze data.jsonl --output report.yaml --autodocOutput includes:
- File type, encoding, compression
- Number of records and fields
- Field types and structure
- Table detection for nested data (JSON/XML)
- AI-generated field descriptions (with
--autodoc) - AI-generated dataset summary (with
--autodoc)
AI Provider Options:
--ai-provider: Choose provider (openai, openrouter, ollama, lmstudio, perplexity)--ai-model: Specify model name (provider-specific)--ai-base-url: Custom API endpoint URL
Supported AI Providers:
-
OpenAI (default if
OPENAI_API_KEYis set)export OPENAI_API_KEY=sk-... undatum analyze data.csv --autodoc --ai-provider openai --ai-model gpt-4o-mini -
OpenRouter (supports multiple models via unified API)
export OPENROUTER_API_KEY=sk-or-... undatum analyze data.csv --autodoc --ai-provider openrouter --ai-model openai/gpt-4o-mini -
Ollama (local models, no API key required)
# Start Ollama and pull a model first: ollama pull llama3.2 undatum analyze data.csv --autodoc --ai-provider ollama --ai-model llama3.2 # Or set custom URL: export OLLAMA_BASE_URL=http://localhost:11434
-
LM Studio (local models, OpenAI-compatible API)
# Start LM Studio and load a model undatum analyze data.csv --autodoc --ai-provider lmstudio --ai-model local-model # Or set custom URL: export LMSTUDIO_BASE_URL=http://localhost:1234/v1
-
Perplexity (backward compatible, uses
PERPLEXITY_API_KEY)export PERPLEXITY_API_KEY=pplx-... undatum analyze data.csv --autodoc --ai-provider perplexity
Configuration Methods:
AI provider can be configured via:
-
Environment variables (lowest precedence):
export UNDATUM_AI_PROVIDER=openai export OPENAI_API_KEY=sk-...
-
Config file (medium precedence): Create
undatum.yamlin your project root or~/.undatum/config.yaml:ai: provider: openai api_key: ${OPENAI_API_KEY} # Can reference env vars model: gpt-4o-mini timeout: 30
-
CLI arguments (highest precedence):
undatum analyze data.csv --autodoc --ai-provider openai --ai-model gpt-4o-mini
Generates dataset documentation with schema, statistics, and samples in Markdown (default), JSON, YAML, or text. Supports AI-powered descriptions with --autodoc.
# Markdown documentation (default)
undatum doc data.jsonl
# JSON documentation with samples
undatum doc data.jsonl --format json --sample-size 5 --output report.json
# With AI-powered descriptions
undatum doc data.csv --autodoc --ai-provider openai --ai-model gpt-4o-miniOutput includes:
- Dataset metadata and summary counts
- Schema fields with types and descriptions
- Field-level uniqueness statistics (when available)
- Sample records (configurable via
--sample-size)
Extended metadata and PII options:
--semantic-types: annotate fields with semantic types (requiresmetacrafterCLI)--pii-detect: detect PII fields and include a PII summary (requiresmetacrafterCLI)--pii-mask-samples: redact detected PII values in samples (use with--pii-detect)
# Semantic typing and PII summary
undatum doc data.csv --semantic-types --pii-detect --format json
# Mask PII values in samples
undatum doc data.csv --pii-detect --pii-mask-samples --format jsonOptional dependencies:
metacrafter(for semantic types and PII detection)langdetect(for language detection in metadata)
Converts data between different formats. Supports CSV, JSON Lines, BSON, XML, XLS, XLSX, Parquet, AVRO, and ORC.
# XML to JSON Lines
undatum convert --tagname item data.xml data.jsonl
# CSV to Parquet
undatum convert data.csv data.parquet
# JSON Lines to CSV
undatum convert data.jsonl data.csvSupported conversions:
| From / To | CSV | JSONL | BSON | JSON | XLS | XLSX | XML | Parquet | ORC | AVRO |
|---|---|---|---|---|---|---|---|---|---|---|
| CSV | - | ✓ | ✓ | - | - | - | - | ✓ | ✓ | ✓ |
| JSONL | ✓ | - | - | - | - | - | - | ✓ | ✓ | - |
| BSON | - | ✓ | - | - | - | - | - | - | - | - |
| JSON | - | ✓ | - | - | - | - | - | - | - | - |
| XLS | - | ✓ | ✓ | - | - | - | - | - | - | - |
| XLSX | - | ✓ | ✓ | - | - | - | - | - | - | - |
| XML | - | ✓ | - | - | - | - | - | - | - | - |
Counts the number of rows in a data file. With DuckDB engine, counting is instant for supported formats.
# Count rows in CSV file
undatum count data.csv
# Count rows in JSONL file
undatum count data.jsonl
# Use DuckDB engine for faster counting
undatum count data.parquet --engine duckdbExtracts the first N rows from a data file. Useful for quick data inspection.
# Extract first 10 rows (default)
undatum head data.csv
# Extract first 20 rows
undatum head data.jsonl --n 20
# Save to file
undatum head data.csv --n 5 output.csvExtracts the last N rows from a data file. Uses efficient buffering for large files.
# Extract last 10 rows (default)
undatum tail data.csv
# Extract last 50 rows
undatum tail data.jsonl --n 50
# Save to file
undatum tail data.csv --n 20 output.csvAdds row numbers, UUIDs, or constant values to records. Useful for adding unique identifiers or sequential numbers.
# Add row numbers (default field: row_id, starts at 1)
undatum enum data.csv output.csv
# Add UUIDs
undatum enum data.jsonl --field id --type uuid output.jsonl
# Add constant value
undatum enum data.csv --field status --type constant --value "active" output.csv
# Custom starting number
undatum enum data.jsonl --field sequence --start 100 output.jsonlReverses the order of rows in a data file.
# Reverse rows
undatum reverse data.csv output.csv
# Reverse JSONL file
undatum reverse data.jsonl output.jsonlDisplays data in a formatted, aligned table for inspection. Uses the rich library for beautiful terminal output.
# Display first 20 rows (default)
undatum table data.csv
# Display with custom limit
undatum table data.jsonl --limit 50
# Display only specific fields
undatum table data.csv --fields name,email,statusEnsures all rows have the same number of fields by padding shorter rows or truncating longer rows. Useful for data cleaning workflows.
# Pad rows with empty string (default)
undatum fixlengths data.csv --strategy pad output.csv
# Pad with custom value
undatum fixlengths data.jsonl --strategy pad --value "N/A" output.jsonl
# Truncate longer rows
undatum fixlengths data.csv --strategy truncate output.csvExtracts field names from data files. Works with CSV, JSON Lines, BSON, and XML files.
undatum headers data.jsonl
undatum headers data.csv --limit 50000Generates detailed statistics about your dataset including field types, uniqueness, lengths, and more. With DuckDB engine, statistics generation is 10-100x faster for supported formats (CSV, JSONL, JSON, Parquet).
undatum stats data.jsonl
undatum stats data.csv --checkdates
undatum stats data.parquet --engine duckdbStatistics include:
- Field types and array flags
- Unique value counts and percentages
- Min/max/average lengths
- Date field detection
Performance: DuckDB engine automatically selected for supported formats, providing columnar processing and SQL-based aggregations for faster statistics.
Calculates frequency distribution for specified fields.
undatum frequency --fields category data.jsonl
undatum frequency --fields status,region data.csvExtracts all unique values from specified field(s).
# Single field
undatum uniq --fields category data.jsonl
# Multiple fields (unique combinations)
undatum uniq --fields status,region data.jsonlSorts rows by one or more columns. Supports multiple sort keys, ascending/descending order, and numeric sorting.
# Sort by single column ascending
undatum sort data.csv --by name output.csv
# Sort by multiple columns
undatum sort data.jsonl --by name,age output.jsonl
# Sort descending
undatum sort data.csv --by date --desc output.csv
# Numeric sort
undatum sort data.csv --by price --numeric output.csvRandomly selects rows from a data file using reservoir sampling algorithm.
# Sample fixed number of rows
undatum sample data.csv --n 1000 output.csv
# Sample by percentage
undatum sample data.jsonl --percent 10 output.jsonlFilters rows using regex patterns. Searches across specified fields or all fields.
# Search across all fields
undatum search data.csv --pattern "error|warning"
# Search in specific fields
undatum search data.jsonl --pattern "^[0-9]+$" --fields id,code
# Case-insensitive search
undatum search data.csv --pattern "ERROR" --ignore-caseRemoves duplicate rows. Can deduplicate by all fields or specified key fields.
# Deduplicate by all fields
undatum dedup data.csv output.csv
# Deduplicate by key fields
undatum dedup data.jsonl --key-fields email output.jsonl
# Keep last duplicate
undatum dedup data.csv --key-fields id --keep last output.csvFills empty or null values with specified values or strategies (forward-fill, backward-fill).
# Fill with constant value
undatum fill data.csv --fields name,email --value "N/A" output.csv
# Forward fill (use previous value)
undatum fill data.jsonl --fields status --strategy forward output.jsonl
# Backward fill (use next value)
undatum fill data.csv --fields category --strategy backward output.csvRenames fields by exact mapping or regex patterns.
# Rename by exact mapping
undatum rename data.csv --map "old_name:new_name,old2:new2" output.csv
# Rename using regex
undatum rename data.jsonl --pattern "^prefix_" --replacement "" output.jsonlSplits a column by separator into multiple rows. Creates one row per value, duplicating other fields.
# Explode comma-separated values
undatum explode data.csv --field tags --separator "," output.csv
# Explode pipe-separated values
undatum explode data.jsonl --field categories --separator "|" output.jsonlPerforms string replacement in specified fields. Supports simple string replacement and regex-based replacement.
# Simple string replacement
undatum replace data.csv --field name --pattern "Mr\." --replacement "Mr" output.csv
# Regex replacement
undatum replace data.jsonl --field email --pattern "@old.com" --replacement "@new.com" --regex output.jsonl
# Global replacement (all occurrences)
undatum replace data.csv --field text --pattern "old" --replacement "new" --global output.csvConcatenates files by rows or columns.
# Concatenate files by rows (vertical)
undatum cat file1.csv file2.csv --mode rows output.csv
# Concatenate files by columns (horizontal)
undatum cat file1.csv file2.csv --mode columns output.csvPerforms relational joins between two files. Supports inner, left, right, and full outer joins.
# Inner join by key field
undatum join data1.csv data2.csv --on email --type inner output.csv
# Left join (keep all rows from first file)
undatum join data1.jsonl data2.jsonl --on id --type left output.jsonl
# Right join (keep all rows from second file)
undatum join data1.csv data2.csv --on id --type right output.csv
# Full outer join (keep all rows from both files)
undatum join data1.jsonl data2.jsonl --on id --type full output.jsonlCompares two files and shows differences (added, removed, and changed rows).
# Compare files by key
undatum diff file1.csv file2.csv --key id
# Output differences to file
undatum diff file1.jsonl file2.jsonl --key email --output changes.jsonl
# Show unified diff format
undatum diff file1.csv file2.csv --key id --format unifiedRemoves rows from input file where keys match exclusion file. Uses hash-based lookup for performance.
# Exclude rows by key
undatum exclude data.csv blacklist.csv --on email output.csv
# Exclude with multiple key fields
undatum exclude data.jsonl exclude.jsonl --on id,email output.jsonlSwaps rows and columns, handling headers appropriately.
# Transpose CSV file
undatum transpose data.csv output.csv
# Transpose JSONL file
undatum transpose data.jsonl output.jsonlDetects file properties including delimiter, encoding, field types, and record count.
# Detect file properties (text output)
undatum sniff data.csv
# Output sniff results as JSON
undatum sniff data.jsonl --format json
# Output as YAML
undatum sniff data.csv --format yamlExtracts specific rows by range or index list. Supports efficient DuckDB-based slicing for supported formats.
# Slice by range
undatum slice data.csv --start 100 --end 200 output.csv
# Slice by specific indices
undatum slice data.jsonl --indices 1,5,10,20 output.jsonlReformats CSV data with specific formatting options (delimiter, quote style, escape character, line endings).
# Change delimiter
undatum fmt data.csv --delimiter ";" output.csv
# Change quote style
undatum fmt data.csv --quote always output.csv
# Change escape character
undatum fmt data.csv --escape backslash output.csv
# Change line endings
undatum fmt data.csv --line-ending crlf output.csvSelects and reorders columns from files. Supports filtering and engine selection.
undatum select --fields name,email,status data.jsonl
undatum select --fields name,email --filter "`status` == 'active'" data.jsonl
undatum select --fields name,email --engine duckdb data.jsonlSplits datasets into multiple files based on chunk size or field values.
# Split by chunk size
undatum split --chunksize 10000 data.jsonl
# Split by field value
undatum split --fields category data.jsonlValidates data against built-in or custom validation rules.
# Validate email addresses
undatum validate --rule common.email --fields email data.jsonl
# Validate Russian INN
undatum validate --rule ru.org.inn --fields VendorINN data.jsonl --mode stats
# Output invalid records
undatum validate --rule ru.org.inn --fields VendorINN data.jsonl --mode invalidAvailable validation rules:
common.email- Email address validationcommon.url- URL validationru.org.inn- Russian organization INN identifierru.org.ogrn- Russian organization OGRN identifier
Generates data schemas from files. Supports multiple output formats including YAML, JSON, Cerberus, JSON Schema, Avro, and Parquet.
# Generate schema in default YAML format
undatum schema data.jsonl
# Generate schema in JSON Schema format
undatum schema data.jsonl --format jsonschema
# Generate schema in Avro format
undatum schema data.jsonl --format avro
# Generate schema in Parquet format
undatum schema data.jsonl --format parquet
# Generate Cerberus schema (for backward compatibility with deprecated `scheme` command)
undatum schema data.jsonl --format cerberus
# Save to file
undatum schema data.jsonl --output schema.yaml
# Generate schema with AI-powered field documentation
undatum schema data.jsonl --autodoc --output schema.yamlSupported schema formats:
yaml(default) - YAML format with full schema detailsjson- JSON format with full schema detailscerberus- Cerberus validation schema format (for backward compatibility with deprecatedschemecommand)jsonschema- JSON Schema (W3C/IETF standard) - Use for API validation, OpenAPI specs, and tool integrationavro- Apache Avro schema format - Use for Kafka message schemas and Hadoop data pipelinesparquet- Parquet schema format - Use for data lake schemas and Parquet file metadata
Use cases:
- JSON Schema: API documentation, data validation in web applications, OpenAPI specifications
- Avro: Kafka message schemas, Hadoop ecosystem integration, schema registry compatibility
- Parquet: Data lake schemas, Parquet file metadata, analytics pipeline definitions
- Cerberus: Python data validation (legacy, use
schemecommand orschema --format cerberus)
Examples:
# Generate JSON Schema for API documentation
undatum schema api_data.jsonl --format jsonschema --output api_schema.json
# Generate Avro schema for Kafka
undatum schema events.jsonl --format avro --output events.avsc
# Generate Parquet schema for data lake
undatum schema data.csv --format parquet --output schema.json
# Generate Cerberus schema (deprecated, use schema command instead)
undatum schema data.jsonl --format cerberus --output validation_schema.jsonNote: The scheme command is deprecated. Use undatum schema --format cerberus instead. The scheme command will show a deprecation warning but continues to work for backward compatibility.
Query data using MistQL query language (experimental).
undatum query data.jsonl "SELECT * WHERE status = 'active'"Flattens nested data structures into key-value pairs.
undatum flatten data.jsonlApplies a transformation script to each record in the file.
undatum apply --script transform.py data.jsonl output.jsonlIngests data from files into databases. Supports MongoDB, PostgreSQL, and Elasticsearch with robust error handling, retry logic, and progress tracking.
# Ingest to MongoDB
undatum ingest data.jsonl mongodb://localhost:27017 mydb mycollection
# Ingest to PostgreSQL (append mode)
undatum ingest data.csv postgresql://user:pass@localhost:5432/mydb mytable --dbtype postgresql
# Ingest to PostgreSQL with auto-create table
undatum ingest data.jsonl postgresql://user:pass@localhost:5432/mydb mytable \
--dbtype postgresql \
--create-table
# Ingest to PostgreSQL with upsert (update on conflict)
undatum ingest data.jsonl postgresql://user:pass@localhost:5432/mydb mytable \
--dbtype postgresql \
--mode upsert \
--upsert-key id
# Ingest to PostgreSQL (replace mode - truncates table first)
undatum ingest data.csv postgresql://user:pass@localhost:5432/mydb mytable \
--dbtype postgresql \
--mode replace
# Ingest to DuckDB (file database)
undatum ingest data.csv duckdb:///path/to/database.db mytable --dbtype duckdb
# Ingest to DuckDB (in-memory database)
undatum ingest data.jsonl duckdb:///:memory: mytable --dbtype duckdb
# Ingest to DuckDB with auto-create table
undatum ingest data.jsonl duckdb:///path/to/database.db mytable \
--dbtype duckdb \
--create-table
# Ingest to DuckDB with upsert
undatum ingest data.jsonl duckdb:///path/to/database.db mytable \
--dbtype duckdb \
--mode upsert \
--upsert-key id
# Ingest to DuckDB with Appender API (streaming)
undatum ingest data.jsonl duckdb:///path/to/database.db mytable \
--dbtype duckdb \
--use-appender
# Ingest to MySQL
undatum ingest data.csv mysql://user:pass@localhost:3306/mydb mytable --dbtype mysql
# Ingest to MySQL with auto-create table
undatum ingest data.jsonl mysql://user:pass@localhost:3306/mydb mytable \
--dbtype mysql \
--create-table
# Ingest to MySQL with upsert
undatum ingest data.jsonl mysql://user:pass@localhost:3306/mydb mytable \
--dbtype mysql \
--mode upsert \
--upsert-key id
# Ingest to SQLite (file database)
undatum ingest data.csv sqlite:///path/to/database.db mytable --dbtype sqlite
# Ingest to SQLite (in-memory database)
undatum ingest data.jsonl sqlite:///:memory: mytable --dbtype sqlite
# Ingest to SQLite with auto-create table
undatum ingest data.jsonl sqlite:///path/to/database.db mytable \
--dbtype sqlite \
--create-table
# Ingest to SQLite with upsert
undatum ingest data.jsonl sqlite:///path/to/database.db mytable \
--dbtype sqlite \
--mode upsert \
--upsert-key id
# Ingest to Elasticsearch
undatum ingest data.jsonl https://elasticsearch:9200 myindex myindex --dbtype elasticsearch --api-key YOUR_API_KEY --doc-id id
# Ingest with options
undatum ingest data.csv mongodb://localhost:27017 mydb mycollection \
--batch 5000 \
--drop \
--totals \
--timeout 30 \
--skip 100
# Ingest multiple files
undatum ingest "data/*.jsonl" mongodb://localhost:27017 mydb mycollectionKey Features:
- Automatic retry: Retries failed operations with exponential backoff (3 attempts)
- Connection pooling: Efficient connection management for all databases
- Progress tracking: Real-time progress bar with throughput (rows/second)
- Error handling: Continues processing after batch failures, logs detailed errors
- Summary statistics: Displays total rows, successful rows, failed rows, and throughput at completion
- Connection validation: Tests database connection before starting ingestion
- PostgreSQL optimizations: Uses COPY FROM for maximum performance (10-100x faster than INSERT)
- Schema management: Auto-create tables from data schema or validate existing schemas
Options:
--batch: Batch size for ingestion (default: 1000, PostgreSQL recommended: 10000, DuckDB recommended: 50000, MySQL recommended: 10000, SQLite recommended: 5000)--dbtype: Database type:mongodb(default),postgresql,postgres,duckdb,mysql,sqlite,elasticsearch, orelastic--drop: Drop existing collection/table before ingestion (MongoDB, Elasticsearch)--mode: Ingestion mode for PostgreSQL/DuckDB/MySQL/SQLite:append(default),replace, orupsert--create-table: Auto-create table from data schema (PostgreSQL/DuckDB/MySQL/SQLite)--upsert-key: Field name(s) for conflict resolution in upsert mode (PostgreSQL/DuckDB/MySQL/SQLite, comma-separated for multiple keys)--use-appender: Use Appender API for DuckDB (streaming insertion, default: False)--totals: Show total record counts during ingestion (uses DuckDB for counting)--timeout: Connection timeout in seconds (positive values, default uses database defaults)--skip: Number of records to skip at the beginning--api-key: API key for database authentication (Elasticsearch)--doc-id: Field name to use as document ID (Elasticsearch, default:id)--verbose: Enable verbose logging output
PostgreSQL-Specific Features:
- COPY FROM: Fastest bulk loading method (100,000+ rows/second)
- Upsert support:
INSERT ... ON CONFLICTfor idempotent ingestion - Schema auto-creation: Automatically creates tables with inferred types
- Connection pooling: Efficient connection reuse
- Transaction management: Atomic batch operations
DuckDB-Specific Features:
- Fast batch inserts: Optimized executemany for high throughput (200,000+ rows/second)
- Appender API: Streaming insertion for real-time data ingestion
- Upsert support:
INSERT ... ON CONFLICTfor idempotent ingestion - Schema auto-creation: Automatically creates tables with inferred types
- File and in-memory: Supports both file-based and in-memory databases
- No server required: Embedded database, no separate server needed
- Analytical database: Optimized for analytical workloads and OLAP queries
MySQL-Specific Features:
- Multi-row INSERT: Efficient batch operations (10,000+ rows/second)
- Upsert support:
INSERT ... ON DUPLICATE KEY UPDATEfor idempotent ingestion - Schema auto-creation: Automatically creates tables with inferred types
- Connection management: Efficient connection handling
- Transaction support: Atomic batch operations
SQLite-Specific Features:
- PRAGMA optimizations: Automatic performance tuning (synchronous=OFF, journal_mode=WAL)
- Fast batch inserts: Optimized executemany (10,000+ rows/second)
- Upsert support:
INSERT ... ON CONFLICTfor idempotent ingestion (SQLite 3.24+) - Schema auto-creation: Automatically creates tables with inferred types
- File and in-memory: Supports both file-based and in-memory databases
- No server required: Embedded database, no separate server needed
- Built-in: Uses Python's built-in sqlite3 module, no dependencies required
Error Handling:
- Transient failures (connection timeouts, network errors) are automatically retried
- Partial batch failures are logged but don't stop ingestion
- Failed records are tracked and reported in the summary
- Detailed error messages help identify problematic data
Performance:
- Batch processing for efficient ingestion
- Connection pooling reduces overhead
- Progress tracking shows real-time throughput
- Optimized for large files with streaming support
Example Output:
Ingesting data.jsonl to mongodb://localhost:27017 with db mydb table mycollection
Ingesting to mongodb: 100%|████████████| 10000/10000 [00:05<00:00, 2000 rows/s]
Ingestion Summary:
Total rows processed: 10000
Successful rows: 10000
Failed rows: 0
Batches processed: 10
Time elapsed: 5.00 seconds
Average throughput: 2000 rows/second
undatum can process files inside compressed containers (ZIP, GZ, BZ2, XZ, ZSTD) with minimal memory usage.
# Process file inside ZIP archive
undatum headers --format-in jsonl data.zip
# Process XZ compressed file
undatum uniq --fields country --format-in jsonl data.jsonl.xzMost commands support filtering using expressions:
# Filter by field value
undatum select --fields name,email --filter "`status` == 'active'" data.jsonl
# Complex filters
undatum frequency --fields category --filter "`price` > 100" data.jsonlFilter syntax:
- Field names:
`fieldname` - String values:
'value' - Operators:
==,!=,>,<,>=,<=,and,or
Automatic date/datetime field detection:
undatum stats --checkdates data.jsonlThis uses the qddate library to automatically identify and parse date fields.
Override automatic detection:
undatum headers --encoding cp1251 --delimiter ";" data.csv
undatum convert --encoding utf-8 --delimiter "," data.csv data.jsonlJSON Lines is a text format where each line is a valid JSON object. It combines JSON flexibility with line-by-line processing capabilities, making it ideal for large datasets.
{"name": "Alice", "age": 30}
{"name": "Bob", "age": 25}
{"name": "Charlie", "age": 35}Standard comma-separated values format. undatum automatically detects delimiters (comma, semicolon, tab) and encoding.
Binary JSON format used by MongoDB. Efficient for binary data storage.
XML files can be converted to JSON Lines by specifying the tag name containing records.
Provider not found:
# Error: No AI provider specified
# Solution: Set environment variable or use --ai-provider
export UNDATUM_AI_PROVIDER=openai
# or
undatum analyze data.csv --autodoc --ai-provider openaiAPI key not found:
# Error: API key is required
# Solution: Set provider-specific API key
export OPENAI_API_KEY=sk-...
export OPENROUTER_API_KEY=sk-or-...
export PERPLEXITY_API_KEY=pplx-...Ollama connection failed:
# Error: Connection refused
# Solution: Ensure Ollama is running and model is pulled
ollama serve
ollama pull llama3.2
# Or specify custom URL
export OLLAMA_BASE_URL=http://localhost:11434LM Studio connection failed:
# Error: Connection refused
# Solution: Start LM Studio server and load a model
# In LM Studio: Start Server, then:
export LMSTUDIO_BASE_URL=http://localhost:1234/v1Structured output errors:
- All providers now use JSON Schema for reliable parsing
- If a provider doesn't support structured output, it will fall back gracefully
- Check provider documentation for model compatibility
- OpenAI: Requires API key, supports
gpt-4o-mini,gpt-4o,gpt-3.5-turbo, etc. - OpenRouter: Unified API for multiple providers, supports models from OpenAI, Anthropic, Google, etc.
- Ollama: Local models, no API key needed, but requires Ollama to be installed and running
- LM Studio: Local models, OpenAI-compatible API, requires LM Studio to be running
- Perplexity: Requires API key, uses
sonarmodel by default
- Use appropriate formats: Parquet/ORC for analytics, JSONL for streaming
- Compression: Use ZSTD or GZIP for better compression ratios
- Chunking: Split large files for parallel processing
- Filtering: Apply filters early to reduce data volume
- Streaming: undatum streams data by default for low memory usage
- AI Documentation: Use local providers (Ollama/LM Studio) for faster, free documentation generation
- Batch Processing: AI descriptions are generated per-table, consider splitting large datasets
The analyze command can automatically generate field descriptions and dataset summaries using AI when --autodoc is enabled. This feature supports multiple LLM providers and uses structured JSON output for reliable parsing.
# Basic AI documentation (auto-detects provider from environment)
undatum analyze data.csv --autodoc
# Use OpenAI with specific model
undatum analyze data.csv --autodoc --ai-provider openai --ai-model gpt-4o-mini
# Use local Ollama model
undatum analyze data.csv --autodoc --ai-provider ollama --ai-model llama3.2
# Use OpenRouter to access various models
undatum analyze data.csv --autodoc --ai-provider openrouter --ai-model anthropic/claude-3-haiku
# Output to YAML with AI descriptions
undatum analyze data.csv --autodoc --output schema.yaml --outtype yamlCreate undatum.yaml in your project:
ai:
provider: openai
model: gpt-4o-mini
timeout: 30Or use ~/.undatum/config.yaml for global settings:
ai:
provider: ollama
model: llama3.2
ollama_base_url: http://localhost:11434Generate descriptions in different languages:
# English (default)
undatum analyze data.csv --autodoc --lang English
# Russian
undatum analyze data.csv --autodoc --lang Russian
# Spanish
undatum analyze data.csv --autodoc --lang SpanishWith --autodoc enabled, the analyzer will:
- Field Descriptions: Generate clear, concise descriptions for each field explaining what it represents
- Dataset Summary: Provide an overall description of the dataset based on sample data
Example output:
tables:
- id: data.csv
fields:
- name: customer_id
ftype: VARCHAR
description: "Unique identifier for each customer"
- name: purchase_date
ftype: DATE
description: "Date when the purchase was made"
description: "Customer purchase records containing transaction details"# 1. Analyze source data
undatum analyze source.xml
# 2. Convert to JSON Lines
undatum convert --tagname item source.xml data.jsonl
# 3. Validate data
undatum validate --rule common.email --fields email data.jsonl --mode invalid > invalid.jsonl
# 4. Get statistics
undatum stats data.jsonl > stats.json
# 5. Extract unique categories
undatum uniq --fields category data.jsonl > categories.txt
# 6. Convert to Parquet for analytics
undatum convert data.jsonl data.parquet# Check for duplicate emails
undatum frequency --fields email data.jsonl | grep -v "1$"
# Validate all required fields
undatum validate --rule common.email --fields email data.jsonl
undatum validate --rule common.url --fields website data.jsonl
# Generate schema with AI documentation
undatum schema data.jsonl --output schema.yaml --autodoc# 1. Analyze dataset with AI-generated descriptions
undatum analyze sales_data.csv --autodoc --ai-provider openai --output analysis.yaml
# 2. Review generated field descriptions
cat analysis.yaml
# 3. Use descriptions in schema generation
undatum schema sales_data.csv --autodoc --output documented_schema.yaml
# 4. Bulk schema extraction with AI documentation
undatum schema_bulk ./data_dir --autodoc --output ./schemas --mode distinctContributions are welcome! Please feel free to submit a Pull Request.
MIT License - see LICENSE file for details.
For questions, issues, or feature requests, please open an issue on GitHub.