Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion pyeit/eit/fem.py
Original file line number Diff line number Diff line change
Expand Up @@ -117,7 +117,7 @@ def solve_vectorized(self, ex_mat: np.ndarray) -> np.ndarray:
# using natural boundary conditions
b = np.zeros((ex_mat.shape[0], self.mesh.n_nodes))
b[np.arange(b.shape[0])[:, None], self.mesh.el_pos[ex_mat]] = [1, -1]
result = np.empty((ex_mat.shape[0], self.kg.shape[0]))
result = np.empty((ex_mat.shape[0], self.kg.shape[0]), dtype=complex)

# TODO Need to inspect this deeper
for i in range(result.shape[0]):
Expand Down
2 changes: 1 addition & 1 deletion pyeit/eit/render.py
Original file line number Diff line number Diff line change
Expand Up @@ -208,7 +208,7 @@ def map_image(image, values):
"""
vals = values[image.astype(int)]
mask = image == -1
vals[mask] = np.NaN
vals[mask] = np.nan

return vals

Expand Down
4 changes: 2 additions & 2 deletions pyeit/quality/merit.py
Original file line number Diff line number Diff line change
Expand Up @@ -600,7 +600,7 @@ def lambda_max(
return arr.flatten()[idxs]


def get_image_bounds(image, background=np.NaN):
def get_image_bounds(image, background=np.nan):
"""
Get the bounds of an image.

Expand All @@ -618,7 +618,7 @@ def get_image_bounds(image, background=np.NaN):
"""
if not np.isnan(background):
image = image.astype(float)
image[np.where(image == background)] = np.NaN
image[np.where(image == background)] = np.nan

rowmin = np.argmax(np.any(~np.isnan(image), axis=0))
rowmax = image.shape[0] - np.argmax(np.any(~np.isnan(image[::-1]), axis=0))
Expand Down
2 changes: 1 addition & 1 deletion tests/test_eit.py
Original file line number Diff line number Diff line change
Expand Up @@ -101,7 +101,7 @@ def test_greit(self):
eit = pyeit.eit.greit.GREIT(self.mesh_obj, self.protocol_obj)
eit.setup(p=0.50, lamb=0.01, perm=1, jac_normalized=True)
ds = eit.solve(self.v1, self.v0, normalize=True)
x, y, ds = eit.mask_value(ds, mask_value=np.NAN)
x, y, ds = eit.mask_value(ds, mask_value=np.nan)

# evaluate GREIT
loc = np.where(np.abs(ds) == np.nanmax(np.abs(ds)))
Expand Down
224 changes: 112 additions & 112 deletions tests/test_merit.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,57 +19,57 @@
patches as mpatches,
axes as mpl_axes,
)
from numpy import NaN
from numpy import nan

parent_dir = str(Path(__file__).parent)

test_image = np.array(
[
[NaN, NaN, NaN, NaN, NaN, NaN, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 1, 1, 1, 0, NaN],
[NaN, 0, 1, 1, 1, 0, NaN],
[NaN, 0, 1, 1, 1, 0, NaN],
[NaN, 0, 1, 1, 1, 0, NaN],
[NaN, 0, 2, 2, 2, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, NaN, NaN, NaN, NaN, NaN, NaN],
[nan, nan, nan, nan, nan, nan, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 1, 1, 1, 0, nan],
[nan, 0, 1, 1, 1, 0, nan],
[nan, 0, 1, 1, 1, 0, nan],
[nan, 0, 1, 1, 1, 0, nan],
[nan, 0, 2, 2, 2, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, nan, nan, nan, nan, nan, nan],
]
)

test_image_2 = np.array(
[
[NaN, NaN, NaN, NaN, NaN, NaN, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 1, 1, 1, 0, NaN],
[NaN, 0, 1, 1, 1, 0, NaN],
[NaN, 0, 1, 1, 1, 0, NaN],
[NaN, 0, 1, 1, 1, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, NaN, NaN, NaN, NaN, NaN, NaN],
[nan, nan, nan, nan, nan, nan, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 1, 1, 1, 0, nan],
[nan, 0, 1, 1, 1, 0, nan],
[nan, 0, 1, 1, 1, 0, nan],
[nan, 0, 1, 1, 1, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, nan, nan, nan, nan, nan, nan],
]
)

test_image_3 = np.array(
[
[NaN, NaN, NaN, NaN, NaN, NaN, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, -1, -1, -1, 0, NaN],
[NaN, 0, 0.1, 0.1, 0.1, 0, NaN],
[NaN, 0, 0.1, 0.1, 0.1, 0, NaN],
[NaN, 0, 0.75, 0.75, 0.75, 0, NaN],
[NaN, 0, 2, 2, 2, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, NaN, NaN, NaN, NaN, NaN, NaN],
[nan, nan, nan, nan, nan, nan, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, -1, -1, -1, 0, nan],
[nan, 0, 0.1, 0.1, 0.1, 0, nan],
[nan, 0, 0.1, 0.1, 0.1, 0, nan],
[nan, 0, 0.75, 0.75, 0.75, 0, nan],
[nan, 0, 2, 2, 2, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, nan, nan, nan, nan, nan, nan],
]
)


def test_calc_circle():
square = imread(parent_dir + "/data/square_image.bmp", pilmode="RGB")

fractional_image = np.full(np.shape(square)[0:2], NaN)
fractional_image = np.full(np.shape(square)[0:2], nan)
fractional_image[
np.where(
(square[:, :, 0] == 255)
Expand Down Expand Up @@ -101,9 +101,9 @@ def test_calc_circle():
#
# img = axs[1, 0].imshow(fractional_image)
# axs[1, 0].set_title("Fractional Image")
# colors = [img.cmap(img.norm(value)) for value in [NaN, 0, 1]]
# colors = [img.cmap(img.norm(value)) for value in [nan, 0, 1]]
# patches = [
# mpatches.Patch(color=colors[0], label="NAN"),
# mpatches.Patch(color=colors[0], label="nan"),
# mpatches.Patch(color=colors[1], label="0"),
# mpatches.Patch(color=colors[2], label="1")
# ]
Expand Down Expand Up @@ -134,43 +134,43 @@ def test_calc_amplitude():
def test_calc_position_error():
test_image_p1 = np.array(
[
[NaN, NaN, NaN, NaN, NaN, NaN, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 1, 1, 1, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, NaN, NaN, NaN, NaN, NaN, NaN],
[nan, nan, nan, nan, nan, nan, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 1, 1, 1, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, nan, nan, nan, nan, nan, nan],
]
)

test_image_p2 = np.array(
[
[NaN, NaN, NaN, NaN, NaN, NaN, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 1, 1, 1, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, NaN, NaN, NaN, NaN, NaN, NaN],
[nan, nan, nan, nan, nan, nan, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 1, 1, 1, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, nan, nan, nan, nan, nan, nan],
]
)

test_image_p2_flipped = np.array(
[
[NaN, NaN, NaN, NaN, NaN, NaN, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 1, 1, 1, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, NaN, NaN, NaN, NaN, NaN, NaN],
[nan, nan, nan, nan, nan, nan, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 1, 1, 1, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, nan, nan, nan, nan, nan, nan],
]
)

Expand Down Expand Up @@ -223,43 +223,43 @@ def test_calc_fractional_amplitude_set():

correct_fractional_amplitude_set = np.array(
[
[NaN, NaN, NaN, NaN, NaN, NaN, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 1, 1, 1, 0, NaN],
[NaN, 0, 1, 1, 1, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, NaN, NaN, NaN, NaN, NaN, NaN],
[nan, nan, nan, nan, nan, nan, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 1, 1, 1, 0, nan],
[nan, 0, 1, 1, 1, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, nan, nan, nan, nan, nan, nan],
]
)

correct_fractional_amplitude_set_range = np.array(
[
[NaN, NaN, NaN, NaN, NaN, NaN, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 1, 1, 1, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, NaN, NaN, NaN, NaN, NaN, NaN],
[nan, nan, nan, nan, nan, nan, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 1, 1, 1, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, nan, nan, nan, nan, nan, nan],
]
)

correct_fractional_amplitude_set_negative_target = np.array(
[
[NaN, NaN, NaN, NaN, NaN, NaN, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 1, 1, 1, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, NaN, NaN, NaN, NaN, NaN, NaN],
[nan, nan, nan, nan, nan, nan, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 1, 1, 1, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, nan, nan, nan, nan, nan, nan],
]
)

Expand Down Expand Up @@ -350,43 +350,43 @@ def test_classify_target_and_background():
def test_calc_ringing():
test_image_ringing = np.array(
[
[NaN, NaN, NaN, NaN, NaN, NaN, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, 0, 1, 1, 1, 0, NaN],
[NaN, 0, 1, 1, 1, 0, NaN],
[NaN, 0, 1, 1, 1, 0, NaN],
[NaN, 0, 1, 1, 1, 0, NaN],
[NaN, 0, -1, -1, -1, 0, NaN],
[NaN, 0, 0, 0, 0, 0, NaN],
[NaN, NaN, NaN, NaN, NaN, NaN, NaN],
[nan, nan, nan, nan, nan, nan, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, 0, 1, 1, 1, 0, nan],
[nan, 0, 1, 1, 1, 0, nan],
[nan, 0, 1, 1, 1, 0, nan],
[nan, 0, 1, 1, 1, 0, nan],
[nan, 0, -1, -1, -1, 0, nan],
[nan, 0, 0, 0, 0, 0, nan],
[nan, nan, nan, nan, nan, nan, nan],
]
)

test_image_target_non_conductive = np.array(
[
[NaN, NaN, NaN, NaN, NaN, NaN, NaN],
[NaN, 3, 3, 3, 3, 3, NaN],
[NaN, 3, 3, 3, 3, 3, NaN],
[NaN, 3, 3, 3, 3, 3, NaN],
[NaN, 3, 3, 3, 3, 3, NaN],
[NaN, 3, 3, 3, 3, 3, NaN],
[NaN, 3, 2, 2, 2, 3, NaN],
[NaN, 3, 3, 3, 3, 3, NaN],
[NaN, NaN, NaN, NaN, NaN, NaN, NaN],
[nan, nan, nan, nan, nan, nan, nan],
[nan, 3, 3, 3, 3, 3, nan],
[nan, 3, 3, 3, 3, 3, nan],
[nan, 3, 3, 3, 3, 3, nan],
[nan, 3, 3, 3, 3, 3, nan],
[nan, 3, 3, 3, 3, 3, nan],
[nan, 3, 2, 2, 2, 3, nan],
[nan, 3, 3, 3, 3, 3, nan],
[nan, nan, nan, nan, nan, nan, nan],
]
)

test_image_recon_non_conductive = np.array(
[
[NaN, NaN, NaN, NaN, NaN, NaN, NaN],
[NaN, -0.4, -0.4, -0.4, -0.4, -0.4, NaN],
[NaN, -0.4, -0.4, -0.4, -0.4, -0.4, NaN],
[NaN, -0.4, -0.4, -0.4, -0.4, -0.4, NaN],
[NaN, -0.4, -0.4, -0.4, -0.4, -0.4, NaN],
[NaN, -0.4, 1, 1, 1, -0.4, NaN],
[NaN, -0.4, -2, -2, -2, -0.4, NaN],
[NaN, -0.4, -0.4, -0.4, -0.4, -0.4, NaN],
[NaN, NaN, NaN, NaN, NaN, NaN, NaN],
[nan, nan, nan, nan, nan, nan, nan],
[nan, -0.4, -0.4, -0.4, -0.4, -0.4, nan],
[nan, -0.4, -0.4, -0.4, -0.4, -0.4, nan],
[nan, -0.4, -0.4, -0.4, -0.4, -0.4, nan],
[nan, -0.4, -0.4, -0.4, -0.4, -0.4, nan],
[nan, -0.4, 1, 1, 1, -0.4, nan],
[nan, -0.4, -2, -2, -2, -0.4, nan],
[nan, -0.4, -0.4, -0.4, -0.4, -0.4, nan],
[nan, nan, nan, nan, nan, nan, nan],
]
)

Expand Down