|
| 1 | +#![no_std] |
| 2 | +#![no_main] |
| 3 | + |
| 4 | +use defmt::*; |
| 5 | +use embassy_executor::Spawner; |
| 6 | +use embassy_stm32::Config; |
| 7 | +use embassy_stm32::gpio::OutputType; |
| 8 | +use embassy_stm32::time::mhz; |
| 9 | +use embassy_stm32::timer::simple_pwm::{PwmPin, SimplePwm}; |
| 10 | +use embassy_time::Timer; |
| 11 | +use {defmt_rtt as _, panic_probe as _}; |
| 12 | + |
| 13 | +// If you are trying this and your USB device doesn't connect, the most |
| 14 | +// common issues are the RCC config and vbus_detection |
| 15 | +// |
| 16 | +// See https://embassy.dev/book/#_the_usb_examples_are_not_working_on_my_board_is_there_anything_else_i_need_to_configure |
| 17 | +// for more information. |
| 18 | +#[embassy_executor::main] |
| 19 | +async fn main(_spawner: Spawner) { |
| 20 | + info!("PWM Ring Buffer Example"); |
| 21 | + |
| 22 | + let mut config = Config::default(); |
| 23 | + { |
| 24 | + use embassy_stm32::rcc::*; |
| 25 | + use embassy_stm32::time::Hertz; |
| 26 | + config.rcc.hse = Some(Hse { |
| 27 | + freq: Hertz(8_000_000), |
| 28 | + mode: HseMode::Bypass, |
| 29 | + }); |
| 30 | + config.rcc.pll_src = PllSource::HSE; |
| 31 | + config.rcc.pll = Some(Pll { |
| 32 | + prediv: PllPreDiv::DIV4, |
| 33 | + mul: PllMul::MUL200, |
| 34 | + divp: Some(PllPDiv::DIV2), // 8mhz / 4 * 200 / 2 = 200Mhz |
| 35 | + divq: Some(PllQDiv::DIV4), // 8mhz / 4 * 200 / 4 = 100Mhz |
| 36 | + divr: None, |
| 37 | + }); |
| 38 | + config.rcc.ahb_pre = AHBPrescaler::DIV1; |
| 39 | + config.rcc.apb1_pre = APBPrescaler::DIV4; |
| 40 | + config.rcc.apb2_pre = APBPrescaler::DIV2; |
| 41 | + config.rcc.sys = Sysclk::PLL1_P; |
| 42 | + } |
| 43 | + let p = embassy_stm32::init(config); |
| 44 | + |
| 45 | + // Initialize PWM on TIM1 |
| 46 | + let ch1_pin = PwmPin::new(p.PE9, OutputType::PushPull); |
| 47 | + let ch2_pin = PwmPin::new(p.PE11, OutputType::PushPull); |
| 48 | + let mut pwm = SimplePwm::new( |
| 49 | + p.TIM1, |
| 50 | + Some(ch1_pin), |
| 51 | + Some(ch2_pin), |
| 52 | + None, |
| 53 | + None, |
| 54 | + mhz(1), |
| 55 | + Default::default(), |
| 56 | + ); |
| 57 | + |
| 58 | + // Use channel 1 for static PWM at 50% |
| 59 | + let mut ch1 = pwm.ch1(); |
| 60 | + ch1.enable(); |
| 61 | + ch1.set_duty_cycle_fraction(1, 2); |
| 62 | + info!("Channel 1 (PE9/D6): Static 50% duty cycle"); |
| 63 | + |
| 64 | + // Get max duty from channel 1 before converting channel 2 |
| 65 | + let max_duty = ch1.max_duty_cycle(); |
| 66 | + info!("PWM max duty: {}", max_duty); |
| 67 | + |
| 68 | + // Create a DMA ring buffer for channel 2 |
| 69 | + const BUFFER_SIZE: usize = 128; |
| 70 | + static mut DMA_BUFFER: [u16; BUFFER_SIZE] = [0u16; BUFFER_SIZE]; |
| 71 | + let dma_buffer = unsafe { &mut *core::ptr::addr_of_mut!(DMA_BUFFER) }; |
| 72 | + |
| 73 | + // Pre-fill buffer with initial sine wave using lookup table approach |
| 74 | + for i in 0..BUFFER_SIZE { |
| 75 | + // Simple sine approximation using triangle wave |
| 76 | + let phase = (i * 256) / BUFFER_SIZE; |
| 77 | + let sine_approx = if phase < 128 { |
| 78 | + phase as u16 * 2 |
| 79 | + } else { |
| 80 | + (255 - phase) as u16 * 2 |
| 81 | + }; |
| 82 | + dma_buffer[i] = (sine_approx as u32 * max_duty as u32 / 256) as u16; |
| 83 | + } |
| 84 | + |
| 85 | + // Convert channel 2 to ring-buffered PWM |
| 86 | + let mut ring_pwm = pwm.into_ring_buffered_channel::<embassy_stm32::timer::Ch2>(p.DMA2_CH6, dma_buffer); |
| 87 | + |
| 88 | + info!("Ring buffer capacity: {}", ring_pwm.capacity()); |
| 89 | + |
| 90 | + // Enable the PWM channel output |
| 91 | + ring_pwm.enable(); |
| 92 | + |
| 93 | + // Pre-write some initial data to the buffer before starting |
| 94 | + info!("Pre-writing initial waveform data..."); |
| 95 | + |
| 96 | + // Start the DMA ring buffer |
| 97 | + ring_pwm.start(); |
| 98 | + info!("Channel 2 (PE11/D5): Ring buffered sine wave started"); |
| 99 | + |
| 100 | + // Give DMA time to start consuming |
| 101 | + Timer::after_millis(10).await; |
| 102 | + |
| 103 | + // Continuously update the waveform |
| 104 | + let mut phase: f32 = 0.0; |
| 105 | + let mut amplitude: f32 = 1.0; |
| 106 | + let mut amplitude_direction = -0.05; |
| 107 | + |
| 108 | + loop { |
| 109 | + Timer::after_millis(50).await; |
| 110 | + |
| 111 | + // Generate new waveform data with varying amplitude |
| 112 | + let mut new_data = [0u16; 32]; |
| 113 | + for i in 0..new_data.len() { |
| 114 | + // Triangle wave approximation for sine |
| 115 | + let pos = ((i as u32 + phase as u32) * 4) % 256; |
| 116 | + let sine_approx = if pos < 128 { |
| 117 | + pos as u16 * 2 |
| 118 | + } else { |
| 119 | + (255 - pos) as u16 * 2 |
| 120 | + }; |
| 121 | + let scaled = (sine_approx as u32 * (amplitude * 256.0) as u32) / (256 * 256); |
| 122 | + new_data[i] = ((scaled * max_duty as u32) / 256) as u16; |
| 123 | + } |
| 124 | + |
| 125 | + // Write new data to the ring buffer |
| 126 | + match ring_pwm.write(&new_data) { |
| 127 | + Ok((written, _remaining)) => { |
| 128 | + if written < new_data.len() { |
| 129 | + info!("Ring buffer getting full, wrote {} of {}", written, new_data.len()); |
| 130 | + } |
| 131 | + } |
| 132 | + Err(e) => { |
| 133 | + info!("Write error: {:?}", e); |
| 134 | + } |
| 135 | + } |
| 136 | + |
| 137 | + // Update phase for animation effect |
| 138 | + phase += 2.0; |
| 139 | + if phase >= 64.0 { |
| 140 | + phase = 0.0; |
| 141 | + } |
| 142 | + |
| 143 | + // Vary amplitude for breathing effect |
| 144 | + amplitude += amplitude_direction; |
| 145 | + if amplitude <= 0.2 || amplitude >= 1.0 { |
| 146 | + amplitude_direction = -amplitude_direction; |
| 147 | + } |
| 148 | + |
| 149 | + // Log buffer status periodically |
| 150 | + if (phase as u32) % 10 == 0 { |
| 151 | + match ring_pwm.len() { |
| 152 | + Ok(len) => info!("Ring buffer fill: {}/{}", len, ring_pwm.capacity()), |
| 153 | + Err(_) => info!("Error reading buffer length"), |
| 154 | + } |
| 155 | + } |
| 156 | + } |
| 157 | +} |
0 commit comments