- Re-implementing Denoising Diffusion Probabilistic Models and Denoising Diffusion Implicit Models using Pytorch
- DDPM
- DDIM
- Denoising Diffusion Probabilistic Models (Paper link)
- Denoising Diffusion Implicit Models (Paper link)
- DDPM
python main.py --model_type=ddpm- DDIM
python main.py --model_type=ddim- DDPM
- DDIM
- Quantitative result
| Model | FID | IS | #Params |
|---|---|---|---|
| DDPM | - | - | - |
| DDIM | - | - | - |
-
Qualitative result (WIP, attach more images later !, Below images are trained model result !)
- DDPM
- DDIM
- Example (Below image is paper result)
- Usage
python metric/fid_test.py --cuda=True- Usage
WIP@article{ho2020denoising,
title={Denoising diffusion probabilistic models},
author={Ho, Jonathan and Jain, Ajay and Abbeel, Pieter},
journal={Advances in Neural Information Processing Systems},
volume={33},
pages={6840--6851},
year={2020}
}@article{song2020denoising,
title={Denoising diffusion implicit models},
author={Song, Jiaming and Meng, Chenlin and Ermon, Stefano},
journal={arXiv preprint arXiv:2010.02502},
year={2020}
}























