-
Notifications
You must be signed in to change notification settings - Fork 28
Tiago project 1 #149
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Tiago project 1 #149
Conversation
adowling2
left a comment
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Please take a look at the comments below. There are a few major conceptual issues/errors that should be addressed.
| "* [Visualization with matplotlib](https://ndcbe.github.io/data-and-computing/notebooks/01/Matplotlib.html)\n", | ||
| "* [Preparing Publication Quality Figures in Python](https://ndcbe.github.io/data-and-computing/notebooks/01/Publication-Quality-Figures.html)\n", | ||
| "* [Euler Forward Method](https://ndcbe.github.io/data-and-computing/notebooks/07/Forward-and-Backward-Euler.html)\n", | ||
| "* [Crank-Nicolson (Trapezoid Rule)](https://dcbe.github.io/data-and-computing/notebooks/07/Trapezoid-Rule.html)" |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This link is broken
| "# Numerically solve the differential equations using Forward Euler Method\n", | ||
| "\n", | ||
| "### BEGIN SOLUTION ###\n", | ||
| "for t in t_values[:-1]:\n", |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This should instead be the generic method implemented as a function. Then, you apply the function to this specific problem. This separates the logic of a generic method from the specific problem. It is also the best practice we used in the class (see other notebooks).
| " Cc_next = Cc_values[-1] + k2 * Cb_values[-1] * h\n", | ||
| "\n", | ||
| " # Print intermediate results\n", | ||
| " print(\"\\nt =\", t)\n", |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This should have a flag to toggle on/off between printing.
| " print(\"Cb =\", Cb_next)\n", | ||
| " print(\"Cc =\", Cc_next)\n", | ||
| "\n", | ||
| " Ca_values.append(Ca_next)\n", |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Recommend preallocating an array to store these results. You already know how many steps will be taken for the method.
| "text/plain": [ | ||
| "<Figure size 600x600 with 1 Axes>" | ||
| ], | ||
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAItCAYAAADbrGvgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACtWUlEQVR4nOzdd3hURffA8e/d9E4qCSEhhNCLSA29CIgoTQELCliwoCj2roC+6vuKFSuigAL6E0WkqoAgJSR0kF4TSKhpm153fn8suxKTQMJussnmfJ5nn2zunb33bAjsYebMjKaUUgghhBBC2BmdrQMQQgghhKgKkuQIIYQQwi5JkiOEEEIIuyRJjhBCCCHskiQ5QgghhLBLkuQIIYQQwi5JkiOEEEIIuyRJjhBCCCHskiQ5QgghhLBLkuQIUQtMnToVTdNITk6ulvutX78eTdNYv359lVx/7ty5aJpGfHx8lVzfGrZu3YqzszMJCQm2DqXGqMyfW0REBBMmTKjymMoyYcIEIiIirum10dHRPPfcc9YNSNiMJDlC/Mvx48d56KGHiIyMxNXVFW9vb3r06MFHH31Ebm6urcO7Jn379kXTNIYOHVrqXHx8PJqmMWPGDBtEVnO9/PLL3HnnnTRq1Mj84X61x7V+sNZl//4Zent706dPH1asWGGTeJ5//nk+/fRTzp07Z5P7C+tytHUAQtQkK1asYPTo0bi4uDBu3DjatGlDQUEBmzZt4tlnn2X//v3MmjXL1mFes+XLl7Njxw46dux4xXa9e/cmNzcXZ2fnaoqsZtm9ezdr1qwhJiYGMP48vvvuuxJtHnjgAbp06cKDDz5oPubp6VmtcVa3e+65hzvuuAMXFxerXnfgwIGMGzcOpRQJCQl8/vnnDB06lFWrVnHjjTda9V5XM3z4cLy9vfnss8+YPn16td5bWJ8kOUJccvLkSe644w4aNWrEn3/+SUhIiPnco48+yrFjx674v0uDwUBBQQGurq7VEW6lhYeHk5mZybRp01i6dOkV2+p0uhr7PqrDnDlzCA8PJzo6GoDIyEgiIyNLtHn44YeJjIzk7rvvLvc6RUVFGAwGu0kWHRwccHBwsPp1mzVrVuLneNttt9GqVSs++uijak9ydDodo0aN4ttvv2XatGlomlat9xfWJcNVQlzyv//9j6ysLL7++usSCY5JVFQUTzzxhPl7TdN47LHHWLBgAa1bt8bFxYXffvsNgBkzZtC9e3f8/f1xc3OjY8eO/PTTT6WuabrGkiVLaNOmDS4uLrRu3dp8nStJSEggKiqKNm3acP78+au29/Ly4sknn2TZsmXs3Lnzim3Lq8mJi4tjyJAh+Pr64uHhQbt27fjoo49KtPnzzz/p1asXHh4e1KtXj+HDh3Pw4MGrxrd9+3ZuvPFGAgICcHNzo3Hjxtx3330l2mRnZ/P0008TFhaGi4sLzZs3Z8aMGSilSrSz5OcKsGTJEvr371+pD7jLh/0+/PBDmjRpgouLCwcOHKCgoIDXXnuNjh074uPjg4eHB7169WLdunXlXuODDz6gUaNGuLm50adPH/bt21fqnocOHWLUqFH4+fnh6upKp06dSiWwVxpeu7y2piJ/bmXV5CilePPNN2nYsCHu7u7069eP/fv3V/jnVpaWLVsSEBDA8ePHr3hvqHj9mMFg4MMPP6R169a4urpSv359HnroIdLS0kq1HThwIAkJCezevdui9yFsT3pyhLhk2bJlREZG0r179wq/5s8//+THH3/kscceIyAgwFyT8dFHHzFs2DDGjh1LQUEBP/zwA6NHj2b58uXcfPPNJa6xadMmFi9ezKRJk/Dy8uLjjz/mtttu49SpU/j7+5d53+PHj9O/f3/8/PxYvXo1AQEBFYr3iSee4IMPPmDq1KlX7c35t9WrV3PLLbcQEhLCE088QXBwMAcPHmT58uXm5G/NmjXcdNNNREZGMnXqVHJzc5k5cyY9evRg586d5dasXLhwgUGDBhEYGMgLL7xAvXr1iI+PZ/HixeY2SimGDRvGunXruP/++2nfvj2///47zz77LElJSXzwwQclrnktP1eApKQkTp06RYcOHSr18zGZM2cOeXl5PPjgg7i4uODn50dGRgazZ8/mzjvvZOLEiWRmZvL1119z4403snXrVtq3b1/iGt9++y2ZmZk8+uij5OXl8dFHH9G/f3/+/vtv6tevD8D+/fvp0aMHoaGhvPDCC3h4ePDjjz8yYsQIfv75Z0aOHAlQapgN4JVXXuHChQvm4bVr/XMDeO2113jzzTcZMmQIQ4YMYefOnQwaNIiCgoJr+vkB6PV60tLSaNKkyTVf498eeugh5s6dy7333svjjz/OyZMn+eSTT9i1axebN2/GycnJ3NY0nLt582auv/56q8UgbEAJIZRer1eAGj58eIVfAyidTqf2799f6lxOTk6J7wsKClSbNm1U//79S13D2dlZHTt2zHxsz549ClAzZ840H3v99dcVoC5evKgOHjyoGjRooDp37qxSU1MrFGufPn1U69atlVJKTZs2TQFqx44dSimlTp48qQD17rvvmtuvW7dOAWrdunVKKaWKiopU48aNVaNGjVRaWlqJaxsMBvPz9u3bq6CgIJWSklLi/eh0OjVu3DjzsTlz5ihAnTx5Uiml1C+//KIAtW3btnLfw5IlSxSg3nzzzRLHR40apTRNK/EzrOjPtSxr1qxRgFq2bNkV23l4eKjx48ebvzf9HL29vdWFCxdKtC0qKlL5+fkljqWlpan69eur++67r9Q13NzcVGJiovl4XFycAtSTTz5pPnbDDTeotm3bqry8PPMxg8Ggunfvrpo2bVpu3P/73/8UoL799lvzsWv9c7tw4YJydnZWN998c4nfg5deekkBJX4+5QHU/fffry5evKguXLigtm/frgYPHlzqd/Lf9zb59++qUkqNHz9eNWrUyPz9xo0bFaAWLFhQ4rW//fZbmceVUsrZ2Vk98sgjV41f1GwyXCUEkJGRARiHdCqjT58+tGrVqtRxNzc38/O0tDT0ej29evUqc5howIABJf7H2q5dO7y9vTlx4kSptvv27aNPnz5ERESwZs0afH19KxUvGHtzfH19mTZtWoVfs2vXLk6ePMmUKVOoV69eiXOmIZ2zZ8+ye/duJkyYgJ+fX4n3M3DgQFauXFnu9U3XXL58OYWFhWW2WblyJQ4ODjz++OMljj/99NMopVi1alWJ45X5uV4uJSUF4Jp+tmCsJwkMDCxxzMHBwVyXYzAYSE1NpaioiE6dOpX5OzFixAhCQ0PN33fp0oWuXbuaf4apqan8+eefjBkzhszMTJKTk0lOTiYlJYUbb7yRo0ePkpSUVOq669at48UXX2Ty5Mncc889gGV/bmvWrKGgoIDJkyeXGNqbMmVKBX5S//j6668JDAwkKCiITp06sXbtWp577jmeeuqpSl2nPIsWLcLHx4eBAweaf1bJycl07NgRT0/PUsOGYPzzr64lG0TVkSRHCMDb2xuAzMzMSr2ucePGZR5fvnw50dHRuLq64ufnR2BgIJ9//jl6vb5U2/Dw8FLHfH19y6wVGDp0KF5eXvz+++/mmE2ysrI4d+6c+XHx4sUyY/Px8WHKlCksXbqUXbt2VeRtmmsj2rRpU24b03oyzZs3L3WuZcuWJCcnk52dXeZr+/Tpw2233ca0adMICAhg+PDhzJkzh/z8/BLXb9CgQalEtGXLliXub1KZn2tZ1L/qfCqqvN+JefPm0a5dO1xdXfH39ycwMJAVK1aU+TvRtGnTUseaNWtmrkc5duwYSileffVVAgMDSzxef/11wDgEeLnExERuv/12evTowfvvv28+bsmfm+m1/443MDCwUkni8OHDWb16NStWrDCvCZWTk4NOZ52PqKNHj6LX6wkKCir188rKyir1swLjn78UHdd+UpMjBMYkp0GDBmUWd17J5T02Jhs3bmTYsGH07t2bzz77jJCQEJycnJgzZw4LFy4s1b682SplfcjedtttzJs3jwULFvDQQw+VODdjxowSvTONGjUqd9E2U23OtGnT+PDDD6/wDquHpmn89NNPxMbGsmzZMn7//Xfuu+8+3nvvPWJjY69panZlfq6XM9XrVDQZ+reyfifmz5/PhAkTGDFiBM8++yxBQUE4ODjw9ttvlyiurSiDwQDAM888U+7so6ioKPPzgoICRo0ahYuLCz/++COOjjXrn/6GDRsyYMAAAIYMGUJAQACPPfYY/fr149ZbbwUoN+EoLi6+6vUNBgNBQUEsWLCgzPP/7nkDSE9Pr3Ctm6i5atZvuhA2dMsttzBr1iy2bNlCt27drvk6P//8M66urvz+++8l1hOZM2eOxTG+++67ODo6motp77rrLvO5cePG0bNnT/P3ZX3Ymph6c6ZOncr48eOvel/TsM++ffvMH0b/1qhRIwAOHz5c6tyhQ4cICAjAw8PjiveJjo4mOjqa//znPyxcuJCxY8fyww8/8MADD9CoUSPWrFlDZmZmid6cQ4cOlbi/pVq0aAEYlxSwlp9++onIyEgWL15c4sPa1Ovyb0ePHi117MiRI+YCYNN0dicnp3L/PC73+OOPs3v3bjZs2GAuXDax5M/N9NqjR4+WmGJ/8eLFa04SwVgk/MEHH/DKK68wcuRINE0z9wylp6eXaFuRFambNGnCmjVr6NGjxxX/XpgkJSVRUFBg7iUUtZcMVwlxyXPPPYeHhwcPPPBAmVOyjx8/Xmq6dFkcHBzQNK3E/zDj4+NZsmSJxTFqmsasWbMYNWoU48ePLzFDKjIykgEDBpgfPXr0uOK1TPU1FVnwrEOHDjRu3JgPP/yw1IeMqWckJCSE9u3bM2/evBJt9u3bxx9//MGQIUPKvX5aWlqpHhbTjCPTkNWQIUMoLi7mk08+KdHugw8+QNM0brrppqu+j4oIDQ0lLCyM7du3W+V68E+v0uXvMS4uji1btpTZfsmSJSVqarZu3UpcXJz5PQYFBdG3b1++/PJLzp49W+r1lw9Vzpkzhy+//JJPP/2ULl26lGpryZ/bgAEDcHJyYubMmSXem6W9g46Ojjz99NMcPHiQX3/9Ffgn0d6wYYO5XXFxcYUW5xwzZgzFxcW88cYbpc4VFRWV+p3esWMHQKVmWoqaSXpyhLikSZMmLFy4kNtvv52WLVuWWPE4JiaGRYsWVWgvnptvvpn333+fwYMHc9ddd3HhwgU+/fRToqKi2Lt3r8Vx6nQ65s+fz4gRIxgzZgwrV66kf//+lb6Oj48PTzzxRIUKkHU6nXkV2vbt23PvvfcSEhLCoUOH2L9/P7///jtg7Gm66aab6NatG/fff795KrKPjw9Tp04t9/rz5s3js88+Y+TIkTRp0oTMzEy++uorvL29zR+yQ4cOpV+/frz88svEx8dz3XXX8ccff/Drr78yZcoUq043Hj58OL/88ovV6jJuueUWFi9ezMiRI7n55ps5efIkX3zxBa1atSIrK6tU+6ioKHr27MkjjzxCfn4+H374If7+/iX2VPr000/p2bMnbdu2ZeLEiURGRnL+/Hm2bNlCYmIie/bsITk5mUmTJtGqVStcXFyYP39+ifuMHDkSDw+Pa/5zCwwM5JlnnuHtt9/mlltuYciQIezatYtVq1ZZPNQzYcIEXnvtNf773/8yYsQIWrduTXR0NC+++CKpqan4+fnxww8/UFRUdNVr9enTh4ceeoi3336b3bt3M2jQIJycnDh69CiLFi3io48+YtSoUeb2q1evJjw8XKaP2wMbzeoSosY6cuSImjhxooqIiFDOzs7Ky8tL9ejRQ82cObPEdF1APfroo2Ve4+uvv1ZNmzZVLi4uqkWLFmrOnDnmaeCXK+8ajRo1KjH99vIp5CY5OTmqT58+ytPTU8XGxl7xPV0+hfxyaWlpysfH56pTyE02bdqkBg4cqLy8vJSHh4dq165dqSnZa9asUT169FBubm7K29tbDR06VB04cKBEm39PB965c6e68847VXh4uHJxcVFBQUHqlltuUdu3by/xuszMTPXkk0+qBg0aKCcnJ9W0aVP17rvvlpi+rFTFf67l2blzpwLUxo0by21T3hTyy3+OJgaDQb311luqUaNGysXFRV1//fVq+fLlpaY6X36N9957T4WFhSkXFxfVq1cvtWfPnlLXPX78uBo3bpwKDg5WTk5OKjQ0VN1yyy3qp59+KnG98h6XT8e+lj83pZQqLi5W06ZNUyEhIcrNzU317dtX7du3r8I/6yv9PZo6dWqJ38Pjx4+rAQMGKBcXF1W/fn310ksvqdWrV191CrnJrFmzVMeOHZWbm5vy8vJSbdu2Vc8995w6c+ZMifcTEhKiXnnllavGLmo+TalrnEIghBB27IYbbqBBgwZlLqZXVeLj42ncuDHvvvsuzzzzTLXdV/xjyZIl3HXXXRw/frzMlc9F7SI1OUIIUYa33nqL//u//6tQYauwH//973957LHHJMGxE1KTI4QQZejatatFWxOI2qm8YnBRO0lPjhBCCCHsktTkCCGEEMIuSU+OEEIIIeySJDlCCCGEsEtSeGwDBoOBM2fO4OXlJRvACSGEEJWglCIzM5MGDRpcdRNXSXJs4MyZM4SFhdk6DCGEEKLWOn36NA0bNrxiG0lybMC0ueDp06fx9va2cTRCCCFE7ZGRkUFYWFiJjXrLI0mODZiGqLy9vSXJEUIIIa5BRco9pPBYCCGEEHZJkhwhhBBC2CVJcoQQQghhlyTJEUIIIYRdkiRHCCGEEHZJkhwhhBBC2CVJcoQQQghhlyTJEUIIIYRdkiRHCCGEEHZJkhwhhBBC2CVJcoQQQghhlyTJEUIIIYRdqhVJzttvv83o0aOJjIxE0zQiIiKu2D4uLo4BAwbg5eWFt7c3gwcPZvfu3WW2PXPmDOPGjSMwMBA3Nzc6derEokWLymybn5/Pa6+9RuPGjXFxcaFJkya8+eabFBYWWvgOhRBCCGFttWIX8pdeegk/Pz86dOhAenr6FdvGxsbSt29fQkNDmT59OgCffPIJvXr1IiYmhrZt25rbpqam0rNnTy5cuMBTTz1Fw4YNWbhwIWPGjOGbb77h3nvvLXHt22+/nV9//ZX77ruPbt26sWXLFl599VWOHTvG3Llzrf22hRBCCGEJVQscP37c/Lx169aqUaNG5bbt3Lmz8vLyUomJieZjiYmJysvLSw0cOLBE22effVYBaunSpeZjRUVFqnPnzsrPz09lZmaaj69YsUIB6qmnnipxjaeeekoBavPmzRV+P3q9XgFKr9dX+DVCCCGEqNxnaK0YroqMjKxQu2PHjrFt2zZGjx5NaGio+XhoaCijR49mzZo1nDt3znx84cKFNGnShKFDh5qPOTg4MHnyZFJTU1m5cmWJtgBTpkwpcU/T9/Pnz6/s2xJCCCFEFaoVSU5Fbdu2DYBu3bqVOhcdHY1Sih07dgBw9uxZkpKSiI6OLrPt5dczPQ8NDSUsLKxE27CwMBo0aFCibXVTShF7IoUft58mr7DYZnEIIYSou5RSGJSBYkMxhYZCCooLyCvKI7co12Yx1YqanIo6c+YMQIleHBPTsaSkpEq3NbVv1apVmfcNDQ0lMTGx3Ljy8/PJz883f5+RkXHF93EtHpi3naz8IjqE1yMqyMvq1xdCiLpGKUWxKqbIUESRoYhCQ2GZX03PTY+yzpm+FhuKKVbGh0EZKDIUGRMDVUyxofif52V8f9X2l9qY7mFqrzAmHwZlMCYiGL+Wddz03HTu38cNyoBCmZ+brmU6XhZ/V3/W376+ev/wLrGrJCcnJwcAFxeXUudcXV1LtKlMW9Pzstqa2l/e9t/efvttpk2bVpG3cE00TaOhrxuHzmVyOjVXkhwhhN0pNBSSW5RLTmEOuUW5JR45hTnkF+cbew6K8ygoLjB/n1+cX+L55cfKa3N5YlLeB7eoOFv+DO0qyXF3dwco0WtikpeXV6JNZdqanpfV1tT+8rb/9uKLL/LUU0+Zv8/IyCg17GWpMD93Y5KTVn6yJYQQ1UUpRW5RLpkFmWQXZpNZmElWQRZZhVn/fL30PLMgk5yiHHKKcsgt/FcCU2RMaooMRbZ+SwDoNB1OOiccdY6lvpZ1rNQ5zREHnQM6TYeD5oCDzgEH7bLvNQd0Oh2OmqPx2GXnyzpW6hpltP/3w/Q+dJoODe2f55qGDuPXso6b2muaVur1V3yNptnsz8uukpwGDRoAJYeZTEzHTENRlWlral9WW1P7soa9TFxcXMrtBbKWcD9jknU6VZIcIYT1KKXILMxEn6cnPT+d9Px09AV69PmXvs9LNz83Hc8oyCC7MBuDMlg9HkfNETdHN9wc3XB3cjc/d3V0xdnBGRcHF1wcXMzPLz92pXPODs64OrjipHMyPhzKTlZMSYKoHewqyencuTMAW7Zs4YEHHihxLjY2Fk3T6NixIwAhISGEhoYSGxtb6jqmY506dSpx7QULFnD69OkSvTCnT5/mzJkzDBs2zOrvpzLCfN2M8aTarsBLCFE7FBuKSctPIyU3xfjISyE5N5mU3BSS8y59zU0mNS8Vfb6eYnXtExocNAc8nT3xdLr0cPbEy8kLD2cPPJ088XL2wsPJAw8nD9wd/0la3BzdcHO6lMxcOu7u6I6Tg5MVfxLC3tlVkhMVFWVesfiNN94w99acOXOGRYsW0b9/f4KDg83t77zzTmbMmMGyZcvM08iLi4uZOXMm9erVY8iQISXaLliwgA8//JD33nvPfPzDDz8EYOzYsdXwDssXZurJkeEqIeq0IkMRybnJnMs+x7mcc5zPPm98nn2O8znG5yl5KZXuZXFzdMPHxYd6LvX++ersY35ez7We+ZyXs5cxkXHywM3RzabDFaJuqxVJznfffUdCQgIAFy9epKCggDfffBOARo0acc8995jbfvTRR/Tr149evXoxefJkAGbOnInBYCiRnAC88MILLFq0iLvuuounnnqK0NBQvv/+e7Zt28bs2bPx8vqngPfmm2/mlltu4f3330ev15tXPP7666+5++676dmzZ1X/GK4oTIarhKgTlFIk5yZzOvN0iUdiViLnss+RnJtcoQRGQ8PX1Rc/Vz8C3ALwd/MnwPXSV7cA/F398XfzNycwLg5VO+QuRFXQlFI1vnS8b9++/PXXX2We69OnD+vXry9xbMuWLbzyyivExcWhaRrdu3fn7bffpkOHDqVen5SUxAsvvMCqVavIysqiVatWPP/889x+++2l2ubl5fHmm28yf/58zp49S2hoKPfeey8vvPACTk4V70LNyMjAx8cHvV6Pt7d3hV93JTkFRbR67XcA9rw+CB836dIVorZSSnE+5zwn9Cc4lXGqRDKTlJV01XVHHDVHgtyDCPYIpr57feNXj/oEuwcT7BFMoHsgfq5+OOpqxf9zhSihMp+htSLJsTdVkeQAdHpzNclZBSyf3JM2oT5Wu64QomoYlIGkrCROpJ/ghP4Ex9OPc0JvfJ5dmF3u63SajmD3YMK8wmjo1dD8tYFHA+p71Mff1R8HnUM1vhMhqk9lPkMljbcjDX3dSc4qIDEtR5IcIWqY3KJcjqUd41DaIQ6nHuZg6kGOph0tt1fGQXMgzCuMCO8IcyJjeoR6hkoBrhAVIEmOHQnzc2f36XSZYSWEjeUV5XEw9SB7L+7lQMoBDqce5mTGyTJrZZx0TjT2aUykTySR9SJp4tOESJ9IGnk3kkRGCAtJkmNHzNPIZYaVENVGKUViZiJ7kvew9+Je9l7cy+HUwxSp0ovX+bn60cKvBc39mtPCtwUt/FoQ7h0utTFCVBH5m2VHZIaVEFXPoAwcTTvKtnPb2HpuK7sv7CYtP61UO39Xf9oFtqNNQBta+BkTmkC3QJlOLUQ1kiTHjoT5mtbKkeEqIaxFKcXx9ONsPbeVbee2sf38dtLz00u0cdI50dK/Je0C2nFd4HW0C2xHiEeIJDRC2JgkOXYkzM84XJWYloNSSv6BFeIa6fP1bEraxIbEDcSejSU1L7XEeTdHNzrU70CX4C50rN+Rln4tcXZwtlG0QojySJJjRxrUc0OnQV6hgYtZ+QR5udo6JCFqBaUUR9KOsDFpIxsSN7Dn4p4SRcKuDq60D2pPl+AudA7uTOuA1jjppChYiJpOkhw74uSgI8THjaT0XE6n5kqSI8QVFBYXEncujj9P/cnGpI2cyz5X4nxT36b0Du1Nz9CetAtsJz01QtRCkuTYmYa+xiQnMS2Hjo18bR2OEDVKYXEhW85u4Y/4P1h3eh0ZBRnmc64OrnQJ6UKfhn3oFdqLEM8QG0YqhLAGSXLsTJifO3EnU2WGlRCXGJSBbee2sfzEctaeWktmQab5nL+rPzeE30CfsD50Ce6Cq6P0fgphTyTJsTPmGVayIKCo446nH2fZ8WWsOLmixFBUgFsAA8IHMChiEB2COsj2B0LYMUly7Ey4vywIKOqu7MJsVpxYweKji9mfst983MvJixsb38iQxkMksRGiDpEkx86YenJOyXCVqEMOphxk0ZFFrDixgpwi4+++o+ZIz9CeDG0ylD5hfXBxcLFxlEKI6iZJjp0J9zcmOWfScykoMuDsqLNxREJUjcLiQn6L/42FBxeyL2Wf+XiEdwSjmo1iaJOh+Ln62TBCIYStSZJjZwI9XXBzciC3sJgz6blEBHjYOiQhrCo9L50fj/zID4d+4GLuRQAcdY4MDB/I6Oaj6VS/kyyEKYQAJMmxO5qmEe7nzuHzmSSk5kiSI+xGvD6e7w58x9LjS8krzgMgyC2IO1veyciokfi7+ds4QiFETSNJjh0K9zcmOadSsoFAW4cjhEWOpR1j1t5Z/Bb/GwoFQEu/ltzT6h4GRwzGyUFWHhZClE2SHDsUfmk38oQUKT4Wtdeh1EPM2juL1Qmrzcf6NOzD+NbjZUhKCFEhkuTYoUb+MsNK1F5H0o4wc9dM1p9ebz42sNFAHmz3IC38WtgsLiFE7SNJjh0y9eRIkiNqk7NZZ/lk9ycsO74MhUKn6bgx4kYebPsgUb5Rtg5PCFELSZJjhxr5G4uNT6XmoJSSbn1Ro6XnpTP779l8f+h7CgwFAAxqNIjHrn+Mxj6NbRydEKI2kyTHDoXWc0OnQU5BMRez8mU3clEjFRoKWXhwIV/u+ZLMQuN+Up2DO/NkhydpG9jWxtEJIeyBJDl2yNlRR4iPcTfy06k5kuSIGif2bCxvx73NCf0JAJr5NuPJjk/So0EP6XkUQliNJDl2qpG/O0npuSSk5NCxkaz6KmqGs1lnmbF9Bn8k/AGAr4svT3R4ghFRI2Q/KSGE1UmSY6fC/dyJOZ4i08hFjVBkKGLe/nl8ufdLcoty0Wk6bm9+O4+2fxQfFx9bhyeEsFOS5Ngp0x5Wp2WGlbCxw6mHeXXzqxxMPQhAh6AOvNT1JZr7NbdxZEIIeydJjp1q5GecYZUgSY6wkYLiAr7c+yXf/P0NRaoIb2dvnu38LMObDJe6GyFEtZAkx07JqsfClvZe3Mtrm1/juP44AAPCB/By9MsEuAXYODIhRF0iSY6dMg1XJWflk51fhIeL/FGLqldkKOKrvV/xxd4vMCgDfq5+vNz1ZQZFDLJ1aEKIOkg++eyUj5sT9dydSM8p5HRaDi2CvW0dkrBzZ7LO8MLGF9h1YRcANzW+iZe6vEQ913q2DUwIUWdJkmPHwv3cSc/Rk5AiSY6oWqtOruKNLW+QWZiJh5MHr0S/wi2Rt9g6LCFEHSdJjh0L93Nnb6KeU1KXI6pITmEOb8W9xa/HfwWgXWA73un1DmFeYTaOTAghJMmxaxGX9rCKT8m2cSTCHiVkJDBl3RSOpR9Dp+mY2HYiD1/3MI46+WdFCFEzyL9GdiwiQJIcUTX+Ov0XL258kczCTALcAni397t0Cu5k67CEEKIESXLsWMSlGVbxyTJcJazDoAx8secLPt/zOQDtA9vzXt/3CHIPsnFkQghRmiQ5dszUk3NGn0teYTGuTrI |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Instead call this section "Comparing Errors"
| "text/plain": [ | ||
| "<Figure size 600x600 with 1 Axes>" | ||
| ], | ||
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAItCAYAAADbrGvgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACtWUlEQVR4nOzdd3hURffA8e/d9E4qCSEhhNCLSA29CIgoTQELCliwoCj2roC+6vuKFSuigAL6E0WkqoAgJSR0kF4TSKhpm153fn8suxKTQMJussnmfJ5nn2zunb33bAjsYebMjKaUUgghhBBC2BmdrQMQQgghhKgKkuQIIYQQwi5JkiOEEEIIuyRJjhBCCCHskiQ5QgghhLBLkuQIIYQQwi5JkiOEEEIIuyRJjhBCCCHskiQ5QgghhLBLkuQIUQtMnToVTdNITk6ulvutX78eTdNYv359lVx/7ty5aJpGfHx8lVzfGrZu3YqzszMJCQm2DqXGqMyfW0REBBMmTKjymMoyYcIEIiIirum10dHRPPfcc9YNSNiMJDlC/Mvx48d56KGHiIyMxNXVFW9vb3r06MFHH31Ebm6urcO7Jn379kXTNIYOHVrqXHx8PJqmMWPGDBtEVnO9/PLL3HnnnTRq1Mj84X61x7V+sNZl//4Zent706dPH1asWGGTeJ5//nk+/fRTzp07Z5P7C+tytHUAQtQkK1asYPTo0bi4uDBu3DjatGlDQUEBmzZt4tlnn2X//v3MmjXL1mFes+XLl7Njxw46dux4xXa9e/cmNzcXZ2fnaoqsZtm9ezdr1qwhJiYGMP48vvvuuxJtHnjgAbp06cKDDz5oPubp6VmtcVa3e+65hzvuuAMXFxerXnfgwIGMGzcOpRQJCQl8/vnnDB06lFWrVnHjjTda9V5XM3z4cLy9vfnss8+YPn16td5bWJ8kOUJccvLkSe644w4aNWrEn3/+SUhIiPnco48+yrFjx674v0uDwUBBQQGurq7VEW6lhYeHk5mZybRp01i6dOkV2+p0uhr7PqrDnDlzCA8PJzo6GoDIyEgiIyNLtHn44YeJjIzk7rvvLvc6RUVFGAwGu0kWHRwccHBwsPp1mzVrVuLneNttt9GqVSs++uijak9ydDodo0aN4ttvv2XatGlomlat9xfWJcNVQlzyv//9j6ysLL7++usSCY5JVFQUTzzxhPl7TdN47LHHWLBgAa1bt8bFxYXffvsNgBkzZtC9e3f8/f1xc3OjY8eO/PTTT6WuabrGkiVLaNOmDS4uLrRu3dp8nStJSEggKiqKNm3acP78+au29/Ly4sknn2TZsmXs3Lnzim3Lq8mJi4tjyJAh+Pr64uHhQbt27fjoo49KtPnzzz/p1asXHh4e1KtXj+HDh3Pw4MGrxrd9+3ZuvPFGAgICcHNzo3Hjxtx3330l2mRnZ/P0008TFhaGi4sLzZs3Z8aMGSilSrSz5OcKsGTJEvr371+pD7jLh/0+/PBDmjRpgouLCwcOHKCgoIDXXnuNjh074uPjg4eHB7169WLdunXlXuODDz6gUaNGuLm50adPH/bt21fqnocOHWLUqFH4+fnh6upKp06dSiWwVxpeu7y2piJ/bmXV5CilePPNN2nYsCHu7u7069eP/fv3V/jnVpaWLVsSEBDA8ePHr3hvqHj9mMFg4MMPP6R169a4urpSv359HnroIdLS0kq1HThwIAkJCezevdui9yFsT3pyhLhk2bJlREZG0r179wq/5s8//+THH3/kscceIyAgwFyT8dFHHzFs2DDGjh1LQUEBP/zwA6NHj2b58uXcfPPNJa6xadMmFi9ezKRJk/Dy8uLjjz/mtttu49SpU/j7+5d53+PHj9O/f3/8/PxYvXo1AQEBFYr3iSee4IMPPmDq1KlX7c35t9WrV3PLLbcQEhLCE088QXBwMAcPHmT58uXm5G/NmjXcdNNNREZGMnXqVHJzc5k5cyY9evRg586d5dasXLhwgUGDBhEYGMgLL7xAvXr1iI+PZ/HixeY2SimGDRvGunXruP/++2nfvj2///47zz77LElJSXzwwQclrnktP1eApKQkTp06RYcOHSr18zGZM2cOeXl5PPjgg7i4uODn50dGRgazZ8/mzjvvZOLEiWRmZvL1119z4403snXrVtq3b1/iGt9++y2ZmZk8+uij5OXl8dFHH9G/f3/+/vtv6tevD8D+/fvp0aMHoaGhvPDCC3h4ePDjjz8yYsQIfv75Z0aOHAlQapgN4JVXXuHChQvm4bVr/XMDeO2113jzzTcZMmQIQ4YMYefOnQwaNIiCgoJr+vkB6PV60tLSaNKkyTVf498eeugh5s6dy7333svjjz/OyZMn+eSTT9i1axebN2/GycnJ3NY0nLt582auv/56q8UgbEAJIZRer1eAGj58eIVfAyidTqf2799f6lxOTk6J7wsKClSbNm1U//79S13D2dlZHTt2zHxsz549ClAzZ840H3v99dcVoC5evKgOHjyoGjRooDp37qxSU1MrFGufPn1U69atlVJKTZs2TQFqx44dSimlTp48qQD17rvvmtuvW7dOAWrdunVKKaWKiopU48aNVaNGjVRaWlqJaxsMBvPz9u3bq6CgIJWSklLi/eh0OjVu3DjzsTlz5ihAnTx5Uiml1C+//KIAtW3btnLfw5IlSxSg3nzzzRLHR40apTRNK/EzrOjPtSxr1qxRgFq2bNkV23l4eKjx48ebvzf9HL29vdWFCxdKtC0qKlL5+fkljqWlpan69eur++67r9Q13NzcVGJiovl4XFycAtSTTz5pPnbDDTeotm3bqry8PPMxg8Ggunfvrpo2bVpu3P/73/8UoL799lvzsWv9c7tw4YJydnZWN998c4nfg5deekkBJX4+5QHU/fffry5evKguXLigtm/frgYPHlzqd/Lf9zb59++qUkqNHz9eNWrUyPz9xo0bFaAWLFhQ4rW//fZbmceVUsrZ2Vk98sgjV41f1GwyXCUEkJGRARiHdCqjT58+tGrVqtRxNzc38/O0tDT0ej29evUqc5howIABJf7H2q5dO7y9vTlx4kSptvv27aNPnz5ERESwZs0afH19KxUvGHtzfH19mTZtWoVfs2vXLk6ePMmUKVOoV69eiXOmIZ2zZ8+ye/duJkyYgJ+fX4n3M3DgQFauXFnu9U3XXL58OYWFhWW2WblyJQ4ODjz++OMljj/99NMopVi1alWJ45X5uV4uJSUF4Jp+tmCsJwkMDCxxzMHBwVyXYzAYSE1NpaioiE6dOpX5OzFixAhCQ0PN33fp0oWuXbuaf4apqan8+eefjBkzhszMTJKTk0lOTiYlJYUbb7yRo0ePkpSUVOq669at48UXX2Ty5Mncc889gGV/bmvWrKGgoIDJkyeXGNqbMmVKBX5S//j6668JDAwkKCiITp06sXbtWp577jmeeuqpSl2nPIsWLcLHx4eBAweaf1bJycl07NgRT0/PUsOGYPzzr64lG0TVkSRHCMDb2xuAzMzMSr2ucePGZR5fvnw50dHRuLq64ufnR2BgIJ9//jl6vb5U2/Dw8FLHfH19y6wVGDp0KF5eXvz+++/mmE2ysrI4d+6c+XHx4sUyY/Px8WHKlCksXbqUXbt2VeRtmmsj2rRpU24b03oyzZs3L3WuZcuWJCcnk52dXeZr+/Tpw2233ca0adMICAhg+PDhzJkzh/z8/BLXb9CgQalEtGXLliXub1KZn2tZ1L/qfCqqvN+JefPm0a5dO1xdXfH39ycwMJAVK1aU+TvRtGnTUseaNWtmrkc5duwYSileffVVAgMDSzxef/11wDgEeLnExERuv/12evTowfvvv28+bsmfm+m1/443MDCwUkni8OHDWb16NStWrDCvCZWTk4NOZ52PqKNHj6LX6wkKCir188rKyir1swLjn78UHdd+UpMjBMYkp0GDBmUWd17J5T02Jhs3bmTYsGH07t2bzz77jJCQEJycnJgzZw4LFy4s1b682SplfcjedtttzJs3jwULFvDQQw+VODdjxowSvTONGjUqd9E2U23OtGnT+PDDD6/wDquHpmn89NNPxMbGsmzZMn7//Xfuu+8+3nvvPWJjY69panZlfq6XM9XrVDQZ+reyfifmz5/PhAkTGDFiBM8++yxBQUE4ODjw9ttvlyiurSiDwQDAM888U+7so6ioKPPzgoICRo0ahYuLCz/++COOjjXrn/6GDRsyYMAAAIYMGUJAQACPPfYY/fr149ZbbwUoN+EoLi6+6vUNBgNBQUEsWLCgzPP/7nkDSE9Pr3Ctm6i5atZvuhA2dMsttzBr1iy2bNlCt27drvk6P//8M66urvz+++8l1hOZM2eOxTG+++67ODo6motp77rrLvO5cePG0bNnT/P3ZX3Ymph6c6ZOncr48eOvel/TsM++ffvMH0b/1qhRIwAOHz5c6tyhQ4cICAjAw8PjiveJjo4mOjqa//znPyxcuJCxY8fyww8/8MADD9CoUSPWrFlDZmZmid6cQ4cOlbi/pVq0aAEYlxSwlp9++onIyEgWL15c4sPa1Ovyb0ePHi117MiRI+YCYNN0dicnp3L/PC73+OOPs3v3bjZs2GAuXDax5M/N9NqjR4+WmGJ/8eLFa04SwVgk/MEHH/DKK68wcuRINE0z9wylp6eXaFuRFambNGnCmjVr6NGjxxX/XpgkJSVRUFBg7iUUtZcMVwlxyXPPPYeHhwcPPPBAmVOyjx8/Xmq6dFkcHBzQNK3E/zDj4+NZsmSJxTFqmsasWbMYNWoU48ePLzFDKjIykgEDBpgfPXr0uOK1TPU1FVnwrEOHDjRu3JgPP/yw1IeMqWckJCSE9u3bM2/evBJt9u3bxx9//MGQIUPKvX5aWlqpHhbTjCPTkNWQIUMoLi7mk08+KdHugw8+QNM0brrppqu+j4oIDQ0lLCyM7du3W+V68E+v0uXvMS4uji1btpTZfsmSJSVqarZu3UpcXJz5PQYFBdG3b1++/PJLzp49W+r1lw9Vzpkzhy+//JJPP/2ULl26lGpryZ/bgAEDcHJyYubMmSXem6W9g46Ojjz99NMcPHiQX3/9Ffgn0d6wYYO5XXFxcYUW5xwzZgzFxcW88cYbpc4VFRWV+p3esWMHQKVmWoqaSXpyhLikSZMmLFy4kNtvv52WLVuWWPE4JiaGRYsWVWgvnptvvpn333+fwYMHc9ddd3HhwgU+/fRToqKi2Lt3r8Vx6nQ65s+fz4gRIxgzZgwrV66kf//+lb6Oj48PTzzxRIUKkHU6nXkV2vbt23PvvfcSEhLCoUOH2L9/P7///jtg7Gm66aab6NatG/fff795KrKPjw9Tp04t9/rz5s3js88+Y+TIkTRp0oTMzEy++uorvL29zR+yQ4cOpV+/frz88svEx8dz3XXX8ccff/Drr78yZcoUq043Hj58OL/88ovV6jJuueUWFi9ezMiRI7n55ps5efIkX3zxBa1atSIrK6tU+6ioKHr27MkjjzxCfn4+H374If7+/iX2VPr000/p2bMnbdu2ZeLEiURGRnL+/Hm2bNlCYmIie/bsITk5mUmTJtGqVStcXFyYP39+ifuMHDkSDw+Pa/5zCwwM5JlnnuHtt9/mlltuYciQIezatYtVq1ZZPNQzYcIEXnvtNf773/8yYsQIWrduTXR0NC+++CKpqan4+fnxww8/UFRUdNVr9enTh4ceeoi3336b3bt3M2jQIJycnDh69CiLFi3io48+YtSoUeb2q1evJjw8XKaP2wMbzeoSosY6cuSImjhxooqIiFDOzs7Ky8tL9ejRQ82cObPEdF1APfroo2Ve4+uvv1ZNmzZVLi4uqkWLFmrOnDnmaeCXK+8ajRo1KjH99vIp5CY5OTmqT58+ytPTU8XGxl7xPV0+hfxyaWlpysfH56pTyE02bdqkBg4cqLy8vJSHh4dq165dqSnZa9asUT169FBubm7K29tbDR06VB04cKBEm39PB965c6e68847VXh4uHJxcVFBQUHqlltuUdu3by/xuszMTPXkk0+qBg0aKCcnJ9W0aVP17rvvlpi+rFTFf67l2blzpwLUxo0by21T3hTyy3+OJgaDQb311luqUaNGysXFRV1//fVq+fLlpaY6X36N9957T4WFhSkXFxfVq1cvtWfPnlLXPX78uBo3bpwKDg5WTk5OKjQ0VN1yyy3qp59+KnG98h6XT8e+lj83pZQqLi5W06ZNUyEhIcrNzU317dtX7du3r8I/6yv9PZo6dWqJ38Pjx4+rAQMGKBcXF1W/fn310ksvqdWrV191CrnJrFmzVMeOHZWbm5vy8vJSbdu2Vc8995w6c+ZMifcTEhKiXnnllavGLmo+TalrnEIghBB27IYbbqBBgwZlLqZXVeLj42ncuDHvvvsuzzzzTLXdV/xjyZIl3HXXXRw/frzMlc9F7SI1OUIIUYa33nqL//u//6tQYauwH//973957LHHJMGxE1KTI4QQZejatatFWxOI2qm8YnBRO0lPjhBCCCHsktTkCCGEEMIuSU+OEEIIIeySJDlCCCGEsEtSeGwDBoOBM2fO4OXlJRvACSGEEJWglCIzM5MGDRpcdRNXSXJs4MyZM4SFhdk6DCGEEKLWOn36NA0bNrxiG0lybMC0ueDp06fx9va2cTRCCCFE7ZGRkUFYWFiJjXrLI0mODZiGqLy9vSXJEUIIIa5BRco9pPBYCCGEEHZJkhwhhBBC2CVJcoQQQghhlyTJEUIIIYRdkiRHCCGEEHZJkhwhhBBC2CVJcoQQQghhlyTJEUIIIYRdkiRHCCGEEHZJkhwhhBBC2CVJcoQQQghhlyTJEUIIIYRdqhVJzttvv83o0aOJjIxE0zQiIiKu2D4uLo4BAwbg5eWFt7c3gwcPZvfu3WW2PXPmDOPGjSMwMBA3Nzc6derEokWLymybn5/Pa6+9RuPGjXFxcaFJkya8+eabFBYWWvgOhRBCCGFttWIX8pdeegk/Pz86dOhAenr6FdvGxsbSt29fQkNDmT59OgCffPIJvXr1IiYmhrZt25rbpqam0rNnTy5cuMBTTz1Fw4YNWbhwIWPGjOGbb77h3nvvLXHt22+/nV9//ZX77ruPbt26sWXLFl599VWOHTvG3Llzrf22hRBCCGEJVQscP37c/Lx169aqUaNG5bbt3Lmz8vLyUomJieZjiYmJysvLSw0cOLBE22effVYBaunSpeZjRUVFqnPnzsrPz09lZmaaj69YsUIB6qmnnipxjaeeekoBavPmzRV+P3q9XgFKr9dX+DVCCCGEqNxnaK0YroqMjKxQu2PHjrFt2zZGjx5NaGio+XhoaCijR49mzZo1nDt3znx84cKFNGnShKFDh5qPOTg4MHnyZFJTU1m5cmWJtgBTpkwpcU/T9/Pnz6/s2xJCCCFEFaoVSU5Fbdu2DYBu3bqVOhcdHY1Sih07dgBw9uxZkpKSiI6OLrPt5dczPQ8NDSUsLKxE27CwMBo0aFCibXVTShF7IoUft58mr7DYZnEIIYSou5RSGJSBYkMxhYZCCooLyCvKI7co12Yx1YqanIo6c+YMQIleHBPTsaSkpEq3NbVv1apVmfcNDQ0lMTGx3Ljy8/PJz883f5+RkXHF93EtHpi3naz8IjqE1yMqyMvq1xdCiLpGKUWxKqbIUESRoYhCQ2GZX03PTY+yzpm+FhuKKVbGh0EZKDIUGRMDVUyxofif52V8f9X2l9qY7mFqrzAmHwZlMCYiGL+Wddz03HTu38cNyoBCmZ+brmU6XhZ/V3/W376+ev/wLrGrJCcnJwcAFxeXUudcXV1LtKlMW9Pzstqa2l/e9t/efvttpk2bVpG3cE00TaOhrxuHzmVyOjVXkhwhhN0pNBSSW5RLTmEOuUW5JR45hTnkF+cbew6K8ygoLjB/n1+cX+L55cfKa3N5YlLeB7eoOFv+DO0qyXF3dwco0WtikpeXV6JNZdqanpfV1tT+8rb/9uKLL/LUU0+Zv8/IyCg17GWpMD93Y5KTVn6yJYQQ1UUpRW5RLpkFmWQXZpNZmElWQRZZhVn/fL30PLMgk5yiHHKKcsgt/FcCU2RMaooMRbZ+SwDoNB1OOiccdY6lvpZ1rNQ5zREHnQM6TYeD5oCDzgEH7bLvNQd0Oh2OmqPx2GXnyzpW6hpltP/3w/Q+dJoODe2f55qGDuPXso6b2muaVur1V3yNptnsz8uukpwGDRoAJYeZTEzHTENRlWlral9WW1P7soa9TFxcXMrtBbKWcD9jknU6VZIcIYT1KKXILMxEn6cnPT+d9Px09AV69PmXvs9LNz83Hc8oyCC7MBuDMlg9HkfNETdHN9wc3XB3cjc/d3V0xdnBGRcHF1wcXMzPLz92pXPODs64OrjipHMyPhzKTlZMSYKoHewqyencuTMAW7Zs4YEHHihxLjY2Fk3T6NixIwAhISGEhoYSGxtb6jqmY506dSpx7QULFnD69OkSvTCnT5/mzJkzDBs2zOrvpzLCfN2M8aTarsBLCFE7FBuKSctPIyU3xfjISyE5N5mU3BSS8y59zU0mNS8Vfb6eYnXtExocNAc8nT3xdLr0cPbEy8kLD2cPPJ088XL2wsPJAw8nD9wd/0la3BzdcHO6lMxcOu7u6I6Tg5MVfxLC3tlVkhMVFWVesfiNN94w99acOXOGRYsW0b9/f4KDg83t77zzTmbMmMGyZcvM08iLi4uZOXMm9erVY8iQISXaLliwgA8//JD33nvPfPzDDz8EYOzYsdXwDssXZurJkeEqIeq0IkMRybnJnMs+x7mcc5zPPm98nn2O8znG5yl5KZXuZXFzdMPHxYd6LvX++ersY35ez7We+ZyXs5cxkXHywM3RzabDFaJuqxVJznfffUdCQgIAFy9epKCggDfffBOARo0acc8995jbfvTRR/Tr149evXoxefJkAGbOnInBYCiRnAC88MILLFq0iLvuuounnnqK0NBQvv/+e7Zt28bs2bPx8vqngPfmm2/mlltu4f3330ev15tXPP7666+5++676dmzZ1X/GK4oTIarhKgTlFIk5yZzOvN0iUdiViLnss+RnJtcoQRGQ8PX1Rc/Vz8C3ALwd/MnwPXSV7cA/F398XfzNycwLg5VO+QuRFXQlFI1vnS8b9++/PXXX2We69OnD+vXry9xbMuWLbzyyivExcWhaRrdu3fn7bffpkOHDqVen5SUxAsvvMCqVavIysqiVatWPP/889x+++2l2ubl5fHmm28yf/58zp49S2hoKPfeey8vvPACTk4V70LNyMjAx8cHvV6Pt7d3hV93JTkFRbR67XcA9rw+CB836dIVorZSSnE+5zwn9Cc4lXGqRDKTlJV01XVHHDVHgtyDCPYIpr57feNXj/oEuwcT7BFMoHsgfq5+OOpqxf9zhSihMp+htSLJsTdVkeQAdHpzNclZBSyf3JM2oT5Wu64QomoYlIGkrCROpJ/ghP4Ex9OPc0JvfJ5dmF3u63SajmD3YMK8wmjo1dD8tYFHA+p71Mff1R8HnUM1vhMhqk9lPkMljbcjDX3dSc4qIDEtR5IcIWqY3KJcjqUd41DaIQ6nHuZg6kGOph0tt1fGQXMgzCuMCO8IcyJjeoR6hkoBrhAVIEmOHQnzc2f36XSZYSWEjeUV5XEw9SB7L+7lQMoBDqce5mTGyTJrZZx0TjT2aUykTySR9SJp4tOESJ9IGnk3kkRGCAtJkmNHzNPIZYaVENVGKUViZiJ7kvew9+Je9l7cy+HUwxSp0ovX+bn60cKvBc39mtPCtwUt/FoQ7h0utTFCVBH5m2VHZIaVEFXPoAwcTTvKtnPb2HpuK7sv7CYtP61UO39Xf9oFtqNNQBta+BkTmkC3QJlOLUQ1kiTHjoT5mtbKkeEqIaxFKcXx9ONsPbeVbee2sf38dtLz00u0cdI50dK/Je0C2nFd4HW0C2xHiEeIJDRC2JgkOXYkzM84XJWYloNSSv6BFeIa6fP1bEraxIbEDcSejSU1L7XEeTdHNzrU70CX4C50rN+Rln4tcXZwtlG0QojySJJjRxrUc0OnQV6hgYtZ+QR5udo6JCFqBaUUR9KOsDFpIxsSN7Dn4p4SRcKuDq60D2pPl+AudA7uTOuA1jjppChYiJpOkhw74uSgI8THjaT0XE6n5kqSI8QVFBYXEncujj9P/cnGpI2cyz5X4nxT36b0Du1Nz9CetAtsJz01QtRCkuTYmYa+xiQnMS2Hjo18bR2OEDVKYXEhW85u4Y/4P1h3eh0ZBRnmc64OrnQJ6UKfhn3oFdqLEM8QG0YqhLAGSXLsTJifO3EnU2WGlRCXGJSBbee2sfzEctaeWktmQab5nL+rPzeE30CfsD50Ce6Cq6P0fgphTyTJsTPmGVayIKCo446nH2fZ8WWsOLmixFBUgFsAA8IHMChiEB2COsj2B0LYMUly7Ey4vywIKOqu7MJsVpxYweKji9mfst983MvJixsb38iQxkMksRGiDpEkx86YenJOyXCVqEMOphxk0ZFFrDixgpwi4+++o+ZIz9CeDG0ylD5hfXBxcLFxlEKI6iZJjp0J9zcmOWfScykoMuDsqLNxREJUjcLiQn6L/42FBxeyL2Wf+XiEdwSjmo1iaJOh+Ln62TBCIYStSZJjZwI9XXBzciC3sJgz6blEBHjYOiQhrCo9L50fj/zID4d+4GLuRQAcdY4MDB/I6Oaj6VS/kyyEKYQAJMmxO5qmEe7nzuHzmSSk5kiSI+xGvD6e7w58x9LjS8krzgMgyC2IO1veyciokfi7+ds4QiFETSNJjh0K9zcmOadSsoFAW4cjhEWOpR1j1t5Z/Bb/GwoFQEu/ltzT6h4GRwzGyUFWHhZClE2SHDsUfmk38oQUKT4Wtdeh1EPM2juL1Qmrzcf6NOzD+NbjZUhKCFEhkuTYoUb+MsNK1F5H0o4wc9dM1p9ebz42sNFAHmz3IC38WtgsLiFE7SNJjh0y9eRIkiNqk7NZZ/lk9ycsO74MhUKn6bgx4kYebPsgUb5Rtg5PCFELSZJjhxr5G4uNT6XmoJSSbn1Ro6XnpTP779l8f+h7CgwFAAxqNIjHrn+Mxj6NbRydEKI2kyTHDoXWc0OnQU5BMRez8mU3clEjFRoKWXhwIV/u+ZLMQuN+Up2DO/NkhydpG9jWxtEJIeyBJDl2yNlRR4iPcTfy06k5kuSIGif2bCxvx73NCf0JAJr5NuPJjk/So0EP6XkUQliNJDl2qpG/O0npuSSk5NCxkaz6KmqGs1lnmbF9Bn8k/AGAr4svT3R4ghFRI2Q/KSGE1UmSY6fC/dyJOZ4i08hFjVBkKGLe/nl8ufdLcoty0Wk6bm9+O4+2fxQfFx9bhyeEsFOS5Ngp0x5Wp2WGlbCxw6mHeXXzqxxMPQhAh6AOvNT1JZr7NbdxZEIIeydJjp1q5GecYZUgSY6wkYLiAr7c+yXf/P0NRaoIb2dvnu38LMObDJe6GyFEtZAkx07JqsfClvZe3Mtrm1/juP44AAPCB/By9MsEuAXYODIhRF0iSY6dMg1XJWflk51fhIeL/FGLqldkKOKrvV/xxd4vMCgDfq5+vNz1ZQZFDLJ1aEKIOkg++eyUj5sT9dydSM8p5HRaDi2CvW0dkrBzZ7LO8MLGF9h1YRcANzW+iZe6vEQ913q2DUwIUWdJkmPHwv3cSc/Rk5AiSY6oWqtOruKNLW+QWZiJh5MHr0S/wi2Rt9g6LCFEHSdJjh0L93Nnb6KeU1KXI6pITmEOb8W9xa/HfwWgXWA73un1DmFeYTaOTAghJMmxaxGX9rCKT8m2cSTCHiVkJDBl3RSOpR9Dp+mY2HYiD1/3MI46+WdFCFEzyL9GdiwiQJIcUTX+Ov0XL258kczCTALcAni397t0Cu5k67CEEKIESXLsWMSlGVbxyTJcJazDoAx8secLPt/zOQDtA9vzXt/3CHIPsnFkQghRmiQ5dszUk3NGn0teYTGuTrI |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This discussion of error rate would be best supported by scaling plots like we did in class. You want to plot the log error of the methods versus the step size. You can then talk about the slope of the plot.
| "text/plain": [ | ||
| "<Figure size 600x600 with 1 Axes>" | ||
| ], | ||
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAItCAYAAADbrGvgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACtWUlEQVR4nOzdd3hURffA8e/d9E4qCSEhhNCLSA29CIgoTQELCliwoCj2roC+6vuKFSuigAL6E0WkqoAgJSR0kF4TSKhpm153fn8suxKTQMJussnmfJ5nn2zunb33bAjsYebMjKaUUgghhBBC2BmdrQMQQgghhKgKkuQIIYQQwi5JkiOEEEIIuyRJjhBCCCHskiQ5QgghhLBLkuQIIYQQwi5JkiOEEEIIuyRJjhBCCCHskiQ5QgghhLBLkuQIUQtMnToVTdNITk6ulvutX78eTdNYv359lVx/7ty5aJpGfHx8lVzfGrZu3YqzszMJCQm2DqXGqMyfW0REBBMmTKjymMoyYcIEIiIirum10dHRPPfcc9YNSNiMJDlC/Mvx48d56KGHiIyMxNXVFW9vb3r06MFHH31Ebm6urcO7Jn379kXTNIYOHVrqXHx8PJqmMWPGDBtEVnO9/PLL3HnnnTRq1Mj84X61x7V+sNZl//4Zent706dPH1asWGGTeJ5//nk+/fRTzp07Z5P7C+tytHUAQtQkK1asYPTo0bi4uDBu3DjatGlDQUEBmzZt4tlnn2X//v3MmjXL1mFes+XLl7Njxw46dux4xXa9e/cmNzcXZ2fnaoqsZtm9ezdr1qwhJiYGMP48vvvuuxJtHnjgAbp06cKDDz5oPubp6VmtcVa3e+65hzvuuAMXFxerXnfgwIGMGzcOpRQJCQl8/vnnDB06lFWrVnHjjTda9V5XM3z4cLy9vfnss8+YPn16td5bWJ8kOUJccvLkSe644w4aNWrEn3/+SUhIiPnco48+yrFjx674v0uDwUBBQQGurq7VEW6lhYeHk5mZybRp01i6dOkV2+p0uhr7PqrDnDlzCA8PJzo6GoDIyEgiIyNLtHn44YeJjIzk7rvvLvc6RUVFGAwGu0kWHRwccHBwsPp1mzVrVuLneNttt9GqVSs++uijak9ydDodo0aN4ttvv2XatGlomlat9xfWJcNVQlzyv//9j6ysLL7++usSCY5JVFQUTzzxhPl7TdN47LHHWLBgAa1bt8bFxYXffvsNgBkzZtC9e3f8/f1xc3OjY8eO/PTTT6WuabrGkiVLaNOmDS4uLrRu3dp8nStJSEggKiqKNm3acP78+au29/Ly4sknn2TZsmXs3Lnzim3Lq8mJi4tjyJAh+Pr64uHhQbt27fjoo49KtPnzzz/p1asXHh4e1KtXj+HDh3Pw4MGrxrd9+3ZuvPFGAgICcHNzo3Hjxtx3330l2mRnZ/P0008TFhaGi4sLzZs3Z8aMGSilSrSz5OcKsGTJEvr371+pD7jLh/0+/PBDmjRpgouLCwcOHKCgoIDXXnuNjh074uPjg4eHB7169WLdunXlXuODDz6gUaNGuLm50adPH/bt21fqnocOHWLUqFH4+fnh6upKp06dSiWwVxpeu7y2piJ/bmXV5CilePPNN2nYsCHu7u7069eP/fv3V/jnVpaWLVsSEBDA8ePHr3hvqHj9mMFg4MMPP6R169a4urpSv359HnroIdLS0kq1HThwIAkJCezevdui9yFsT3pyhLhk2bJlREZG0r179wq/5s8//+THH3/kscceIyAgwFyT8dFHHzFs2DDGjh1LQUEBP/zwA6NHj2b58uXcfPPNJa6xadMmFi9ezKRJk/Dy8uLjjz/mtttu49SpU/j7+5d53+PHj9O/f3/8/PxYvXo1AQEBFYr3iSee4IMPPmDq1KlX7c35t9WrV3PLLbcQEhLCE088QXBwMAcPHmT58uXm5G/NmjXcdNNNREZGMnXqVHJzc5k5cyY9evRg586d5dasXLhwgUGDBhEYGMgLL7xAvXr1iI+PZ/HixeY2SimGDRvGunXruP/++2nfvj2///47zz77LElJSXzwwQclrnktP1eApKQkTp06RYcOHSr18zGZM2cOeXl5PPjgg7i4uODn50dGRgazZ8/mzjvvZOLEiWRmZvL1119z4403snXrVtq3b1/iGt9++y2ZmZk8+uij5OXl8dFHH9G/f3/+/vtv6tevD8D+/fvp0aMHoaGhvPDCC3h4ePDjjz8yYsQIfv75Z0aOHAlQapgN4JVXXuHChQvm4bVr/XMDeO2113jzzTcZMmQIQ4YMYefOnQwaNIiCgoJr+vkB6PV60tLSaNKkyTVf498eeugh5s6dy7333svjjz/OyZMn+eSTT9i1axebN2/GycnJ3NY0nLt582auv/56q8UgbEAJIZRer1eAGj58eIVfAyidTqf2799f6lxOTk6J7wsKClSbNm1U//79S13D2dlZHTt2zHxsz549ClAzZ840H3v99dcVoC5evKgOHjyoGjRooDp37qxSU1MrFGufPn1U69atlVJKTZs2TQFqx44dSimlTp48qQD17rvvmtuvW7dOAWrdunVKKaWKiopU48aNVaNGjVRaWlqJaxsMBvPz9u3bq6CgIJWSklLi/eh0OjVu3DjzsTlz5ihAnTx5Uiml1C+//KIAtW3btnLfw5IlSxSg3nzzzRLHR40apTRNK/EzrOjPtSxr1qxRgFq2bNkV23l4eKjx48ebvzf9HL29vdWFCxdKtC0qKlL5+fkljqWlpan69eur++67r9Q13NzcVGJiovl4XFycAtSTTz5pPnbDDTeotm3bqry8PPMxg8Ggunfvrpo2bVpu3P/73/8UoL799lvzsWv9c7tw4YJydnZWN998c4nfg5deekkBJX4+5QHU/fffry5evKguXLigtm/frgYPHlzqd/Lf9zb59++qUkqNHz9eNWrUyPz9xo0bFaAWLFhQ4rW//fZbmceVUsrZ2Vk98sgjV41f1GwyXCUEkJGRARiHdCqjT58+tGrVqtRxNzc38/O0tDT0ej29evUqc5howIABJf7H2q5dO7y9vTlx4kSptvv27aNPnz5ERESwZs0afH19KxUvGHtzfH19mTZtWoVfs2vXLk6ePMmUKVOoV69eiXOmIZ2zZ8+ye/duJkyYgJ+fX4n3M3DgQFauXFnu9U3XXL58OYWFhWW2WblyJQ4ODjz++OMljj/99NMopVi1alWJ45X5uV4uJSUF4Jp+tmCsJwkMDCxxzMHBwVyXYzAYSE1NpaioiE6dOpX5OzFixAhCQ0PN33fp0oWuXbuaf4apqan8+eefjBkzhszMTJKTk0lOTiYlJYUbb7yRo0ePkpSUVOq669at48UXX2Ty5Mncc889gGV/bmvWrKGgoIDJkyeXGNqbMmVKBX5S//j6668JDAwkKCiITp06sXbtWp577jmeeuqpSl2nPIsWLcLHx4eBAweaf1bJycl07NgRT0/PUsOGYPzzr64lG0TVkSRHCMDb2xuAzMzMSr2ucePGZR5fvnw50dHRuLq64ufnR2BgIJ9//jl6vb5U2/Dw8FLHfH19y6wVGDp0KF5eXvz+++/mmE2ysrI4d+6c+XHx4sUyY/Px8WHKlCksXbqUXbt2VeRtmmsj2rRpU24b03oyzZs3L3WuZcuWJCcnk52dXeZr+/Tpw2233ca0adMICAhg+PDhzJkzh/z8/BLXb9CgQalEtGXLliXub1KZn2tZ1L/qfCqqvN+JefPm0a5dO1xdXfH39ycwMJAVK1aU+TvRtGnTUseaNWtmrkc5duwYSileffVVAgMDSzxef/11wDgEeLnExERuv/12evTowfvvv28+bsmfm+m1/443MDCwUkni8OHDWb16NStWrDCvCZWTk4NOZ52PqKNHj6LX6wkKCir188rKyir1swLjn78UHdd+UpMjBMYkp0GDBmUWd17J5T02Jhs3bmTYsGH07t2bzz77jJCQEJycnJgzZw4LFy4s1b682SplfcjedtttzJs3jwULFvDQQw+VODdjxowSvTONGjUqd9E2U23OtGnT+PDDD6/wDquHpmn89NNPxMbGsmzZMn7//Xfuu+8+3nvvPWJjY69panZlfq6XM9XrVDQZ+reyfifmz5/PhAkTGDFiBM8++yxBQUE4ODjw9ttvlyiurSiDwQDAM888U+7so6ioKPPzgoICRo0ahYuLCz/++COOjjXrn/6GDRsyYMAAAIYMGUJAQACPPfYY/fr149ZbbwUoN+EoLi6+6vUNBgNBQUEsWLCgzPP/7nkDSE9Pr3Ctm6i5atZvuhA2dMsttzBr1iy2bNlCt27drvk6P//8M66urvz+++8l1hOZM2eOxTG+++67ODo6motp77rrLvO5cePG0bNnT/P3ZX3Ymph6c6ZOncr48eOvel/TsM++ffvMH0b/1qhRIwAOHz5c6tyhQ4cICAjAw8PjiveJjo4mOjqa//znPyxcuJCxY8fyww8/8MADD9CoUSPWrFlDZmZmid6cQ4cOlbi/pVq0aAEYlxSwlp9++onIyEgWL15c4sPa1Ovyb0ePHi117MiRI+YCYNN0dicnp3L/PC73+OOPs3v3bjZs2GAuXDax5M/N9NqjR4+WmGJ/8eLFa04SwVgk/MEHH/DKK68wcuRINE0z9wylp6eXaFuRFambNGnCmjVr6NGjxxX/XpgkJSVRUFBg7iUUtZcMVwlxyXPPPYeHhwcPPPBAmVOyjx8/Xmq6dFkcHBzQNK3E/zDj4+NZsmSJxTFqmsasWbMYNWoU48ePLzFDKjIykgEDBpgfPXr0uOK1TPU1FVnwrEOHDjRu3JgPP/yw1IeMqWckJCSE9u3bM2/evBJt9u3bxx9//MGQIUPKvX5aWlqpHhbTjCPTkNWQIUMoLi7mk08+KdHugw8+QNM0brrppqu+j4oIDQ0lLCyM7du3W+V68E+v0uXvMS4uji1btpTZfsmSJSVqarZu3UpcXJz5PQYFBdG3b1++/PJLzp49W+r1lw9Vzpkzhy+//JJPP/2ULl26lGpryZ/bgAEDcHJyYubMmSXem6W9g46Ojjz99NMcPHiQX3/9Ffgn0d6wYYO5XXFxcYUW5xwzZgzFxcW88cYbpc4VFRWV+p3esWMHQKVmWoqaSXpyhLikSZMmLFy4kNtvv52WLVuWWPE4JiaGRYsWVWgvnptvvpn333+fwYMHc9ddd3HhwgU+/fRToqKi2Lt3r8Vx6nQ65s+fz4gRIxgzZgwrV66kf//+lb6Oj48PTzzxRIUKkHU6nXkV2vbt23PvvfcSEhLCoUOH2L9/P7///jtg7Gm66aab6NatG/fff795KrKPjw9Tp04t9/rz5s3js88+Y+TIkTRp0oTMzEy++uorvL29zR+yQ4cOpV+/frz88svEx8dz3XXX8ccff/Drr78yZcoUq043Hj58OL/88ovV6jJuueUWFi9ezMiRI7n55ps5efIkX3zxBa1atSIrK6tU+6ioKHr27MkjjzxCfn4+H374If7+/iX2VPr000/p2bMnbdu2ZeLEiURGRnL+/Hm2bNlCYmIie/bsITk5mUmTJtGqVStcXFyYP39+ifuMHDkSDw+Pa/5zCwwM5JlnnuHtt9/mlltuYciQIezatYtVq1ZZPNQzYcIEXnvtNf773/8yYsQIWrduTXR0NC+++CKpqan4+fnxww8/UFRUdNVr9enTh4ceeoi3336b3bt3M2jQIJycnDh69CiLFi3io48+YtSoUeb2q1evJjw8XKaP2wMbzeoSosY6cuSImjhxooqIiFDOzs7Ky8tL9ejRQ82cObPEdF1APfroo2Ve4+uvv1ZNmzZVLi4uqkWLFmrOnDnmaeCXK+8ajRo1KjH99vIp5CY5OTmqT58+ytPTU8XGxl7xPV0+hfxyaWlpysfH56pTyE02bdqkBg4cqLy8vJSHh4dq165dqSnZa9asUT169FBubm7K29tbDR06VB04cKBEm39PB965c6e68847VXh4uHJxcVFBQUHqlltuUdu3by/xuszMTPXkk0+qBg0aKCcnJ9W0aVP17rvvlpi+rFTFf67l2blzpwLUxo0by21T3hTyy3+OJgaDQb311luqUaNGysXFRV1//fVq+fLlpaY6X36N9957T4WFhSkXFxfVq1cvtWfPnlLXPX78uBo3bpwKDg5WTk5OKjQ0VN1yyy3qp59+KnG98h6XT8e+lj83pZQqLi5W06ZNUyEhIcrNzU317dtX7du3r8I/6yv9PZo6dWqJ38Pjx4+rAQMGKBcXF1W/fn310ksvqdWrV191CrnJrFmzVMeOHZWbm5vy8vJSbdu2Vc8995w6c+ZMifcTEhKiXnnllavGLmo+TalrnEIghBB27IYbbqBBgwZlLqZXVeLj42ncuDHvvvsuzzzzTLXdV/xjyZIl3HXXXRw/frzMlc9F7SI1OUIIUYa33nqL//u//6tQYauwH//973957LHHJMGxE1KTI4QQZejatatFWxOI2qm8YnBRO0lPjhBCCCHsktTkCCGEEMIuSU+OEEIIIeySJDlCCCGEsEtSeGwDBoOBM2fO4OXlJRvACSGEEJWglCIzM5MGDRpcdRNXSXJs4MyZM4SFhdk6DCGEEKLWOn36NA0bNrxiG0lybMC0ueDp06fx9va2cTRCCCFE7ZGRkUFYWFiJjXrLI0mODZiGqLy9vSXJEUIIIa5BRco9pPBYCCGEEHZJkhwhhBBC2CVJcoQQQghhlyTJEUIIIYRdkiRHCCGEEHZJkhwhhBBC2CVJcoQQQghhlyTJEUIIIYRdkiRHCCGEEHZJkhwhhBBC2CVJcoQQQghhlyTJEUIIIYRdqhVJzttvv83o0aOJjIxE0zQiIiKu2D4uLo4BAwbg5eWFt7c3gwcPZvfu3WW2PXPmDOPGjSMwMBA3Nzc6derEokWLymybn5/Pa6+9RuPGjXFxcaFJkya8+eabFBYWWvgOhRBCCGFttWIX8pdeegk/Pz86dOhAenr6FdvGxsbSt29fQkNDmT59OgCffPIJvXr1IiYmhrZt25rbpqam0rNnTy5cuMBTTz1Fw4YNWbhwIWPGjOGbb77h3nvvLXHt22+/nV9//ZX77ruPbt26sWXLFl599VWOHTvG3Llzrf22hRBCCGEJVQscP37c/Lx169aqUaNG5bbt3Lmz8vLyUomJieZjiYmJysvLSw0cOLBE22effVYBaunSpeZjRUVFqnPnzsrPz09lZmaaj69YsUIB6qmnnipxjaeeekoBavPmzRV+P3q9XgFKr9dX+DVCCCGEqNxnaK0YroqMjKxQu2PHjrFt2zZGjx5NaGio+XhoaCijR49mzZo1nDt3znx84cKFNGnShKFDh5qPOTg4MHnyZFJTU1m5cmWJtgBTpkwpcU/T9/Pnz6/s2xJCCCFEFaoVSU5Fbdu2DYBu3bqVOhcdHY1Sih07dgBw9uxZkpKSiI6OLrPt5dczPQ8NDSUsLKxE27CwMBo0aFCibXVTShF7IoUft58mr7DYZnEIIYSou5RSGJSBYkMxhYZCCooLyCvKI7co12Yx1YqanIo6c+YMQIleHBPTsaSkpEq3NbVv1apVmfcNDQ0lMTGx3Ljy8/PJz883f5+RkXHF93EtHpi3naz8IjqE1yMqyMvq1xdCiLpGKUWxKqbIUESRoYhCQ2GZX03PTY+yzpm+FhuKKVbGh0EZKDIUGRMDVUyxofif52V8f9X2l9qY7mFqrzAmHwZlMCYiGL+Wddz03HTu38cNyoBCmZ+brmU6XhZ/V3/W376+ev/wLrGrJCcnJwcAFxeXUudcXV1LtKlMW9Pzstqa2l/e9t/efvttpk2bVpG3cE00TaOhrxuHzmVyOjVXkhwhhN0pNBSSW5RLTmEOuUW5JR45hTnkF+cbew6K8ygoLjB/n1+cX+L55cfKa3N5YlLeB7eoOFv+DO0qyXF3dwco0WtikpeXV6JNZdqanpfV1tT+8rb/9uKLL/LUU0+Zv8/IyCg17GWpMD93Y5KTVn6yJYQQ1UUpRW5RLpkFmWQXZpNZmElWQRZZhVn/fL30PLMgk5yiHHKKcsgt/FcCU2RMaooMRbZ+SwDoNB1OOiccdY6lvpZ1rNQ5zREHnQM6TYeD5oCDzgEH7bLvNQd0Oh2OmqPx2GXnyzpW6hpltP/3w/Q+dJoODe2f55qGDuPXso6b2muaVur1V3yNptnsz8uukpwGDRoAJYeZTEzHTENRlWlral9WW1P7soa9TFxcXMrtBbKWcD9jknU6VZIcIYT1KKXILMxEn6cnPT+d9Px09AV69PmXvs9LNz83Hc8oyCC7MBuDMlg9HkfNETdHN9wc3XB3cjc/d3V0xdnBGRcHF1wcXMzPLz92pXPODs64OrjipHMyPhzKTlZMSYKoHewqyencuTMAW7Zs4YEHHihxLjY2Fk3T6NixIwAhISGEhoYSGxtb6jqmY506dSpx7QULFnD69OkSvTCnT5/mzJkzDBs2zOrvpzLCfN2M8aTarsBLCFE7FBuKSctPIyU3xfjISyE5N5mU3BSS8y59zU0mNS8Vfb6eYnXtExocNAc8nT3xdLr0cPbEy8kLD2cPPJ088XL2wsPJAw8nD9wd/0la3BzdcHO6lMxcOu7u6I6Tg5MVfxLC3tlVkhMVFWVesfiNN94w99acOXOGRYsW0b9/f4KDg83t77zzTmbMmMGyZcvM08iLi4uZOXMm9erVY8iQISXaLliwgA8//JD33nvPfPzDDz8EYOzYsdXwDssXZurJkeEqIeq0IkMRybnJnMs+x7mcc5zPPm98nn2O8znG5yl5KZXuZXFzdMPHxYd6LvX++ersY35ez7We+ZyXs5cxkXHywM3RzabDFaJuqxVJznfffUdCQgIAFy9epKCggDfffBOARo0acc8995jbfvTRR/Tr149evXoxefJkAGbOnInBYCiRnAC88MILLFq0iLvuuounnnqK0NBQvv/+e7Zt28bs2bPx8vqngPfmm2/mlltu4f3330ev15tXPP7666+5++676dmzZ1X/GK4oTIarhKgTlFIk5yZzOvN0iUdiViLnss+RnJtcoQRGQ8PX1Rc/Vz8C3ALwd/MnwPXSV7cA/F398XfzNycwLg5VO+QuRFXQlFI1vnS8b9++/PXXX2We69OnD+vXry9xbMuWLbzyyivExcWhaRrdu3fn7bffpkOHDqVen5SUxAsvvMCqVavIysqiVatWPP/889x+++2l2ubl5fHmm28yf/58zp49S2hoKPfeey8vvPACTk4V70LNyMjAx8cHvV6Pt7d3hV93JTkFRbR67XcA9rw+CB836dIVorZSSnE+5zwn9Cc4lXGqRDKTlJV01XVHHDVHgtyDCPYIpr57feNXj/oEuwcT7BFMoHsgfq5+OOpqxf9zhSihMp+htSLJsTdVkeQAdHpzNclZBSyf3JM2oT5Wu64QomoYlIGkrCROpJ/ghP4Ex9OPc0JvfJ5dmF3u63SajmD3YMK8wmjo1dD8tYFHA+p71Mff1R8HnUM1vhMhqk9lPkMljbcjDX3dSc4qIDEtR5IcIWqY3KJcjqUd41DaIQ6nHuZg6kGOph0tt1fGQXMgzCuMCO8IcyJjeoR6hkoBrhAVIEmOHQnzc2f36XSZYSWEjeUV5XEw9SB7L+7lQMoBDqce5mTGyTJrZZx0TjT2aUykTySR9SJp4tOESJ9IGnk3kkRGCAtJkmNHzNPIZYaVENVGKUViZiJ7kvew9+Je9l7cy+HUwxSp0ovX+bn60cKvBc39mtPCtwUt/FoQ7h0utTFCVBH5m2VHZIaVEFXPoAwcTTvKtnPb2HpuK7sv7CYtP61UO39Xf9oFtqNNQBta+BkTmkC3QJlOLUQ1kiTHjoT5mtbKkeEqIaxFKcXx9ONsPbeVbee2sf38dtLz00u0cdI50dK/Je0C2nFd4HW0C2xHiEeIJDRC2JgkOXYkzM84XJWYloNSSv6BFeIa6fP1bEraxIbEDcSejSU1L7XEeTdHNzrU70CX4C50rN+Rln4tcXZwtlG0QojySJJjRxrUc0OnQV6hgYtZ+QR5udo6JCFqBaUUR9KOsDFpIxsSN7Dn4p4SRcKuDq60D2pPl+AudA7uTOuA1jjppChYiJpOkhw74uSgI8THjaT0XE6n5kqSI8QVFBYXEncujj9P/cnGpI2cyz5X4nxT36b0Du1Nz9CetAtsJz01QtRCkuTYmYa+xiQnMS2Hjo18bR2OEDVKYXEhW85u4Y/4P1h3eh0ZBRnmc64OrnQJ6UKfhn3oFdqLEM8QG0YqhLAGSXLsTJifO3EnU2WGlRCXGJSBbee2sfzEctaeWktmQab5nL+rPzeE30CfsD50Ce6Cq6P0fgphTyTJsTPmGVayIKCo446nH2fZ8WWsOLmixFBUgFsAA8IHMChiEB2COsj2B0LYMUly7Ey4vywIKOqu7MJsVpxYweKji9mfst983MvJixsb38iQxkMksRGiDpEkx86YenJOyXCVqEMOphxk0ZFFrDixgpwi4+++o+ZIz9CeDG0ylD5hfXBxcLFxlEKI6iZJjp0J9zcmOWfScykoMuDsqLNxREJUjcLiQn6L/42FBxeyL2Wf+XiEdwSjmo1iaJOh+Ln62TBCIYStSZJjZwI9XXBzciC3sJgz6blEBHjYOiQhrCo9L50fj/zID4d+4GLuRQAcdY4MDB/I6Oaj6VS/kyyEKYQAJMmxO5qmEe7nzuHzmSSk5kiSI+xGvD6e7w58x9LjS8krzgMgyC2IO1veyciokfi7+ds4QiFETSNJjh0K9zcmOadSsoFAW4cjhEWOpR1j1t5Z/Bb/GwoFQEu/ltzT6h4GRwzGyUFWHhZClE2SHDsUfmk38oQUKT4Wtdeh1EPM2juL1Qmrzcf6NOzD+NbjZUhKCFEhkuTYoUb+MsNK1F5H0o4wc9dM1p9ebz42sNFAHmz3IC38WtgsLiFE7SNJjh0y9eRIkiNqk7NZZ/lk9ycsO74MhUKn6bgx4kYebPsgUb5Rtg5PCFELSZJjhxr5G4uNT6XmoJSSbn1Ro6XnpTP779l8f+h7CgwFAAxqNIjHrn+Mxj6NbRydEKI2kyTHDoXWc0OnQU5BMRez8mU3clEjFRoKWXhwIV/u+ZLMQuN+Up2DO/NkhydpG9jWxtEJIeyBJDl2yNlRR4iPcTfy06k5kuSIGif2bCxvx73NCf0JAJr5NuPJjk/So0EP6XkUQliNJDl2qpG/O0npuSSk5NCxkaz6KmqGs1lnmbF9Bn8k/AGAr4svT3R4ghFRI2Q/KSGE1UmSY6fC/dyJOZ4i08hFjVBkKGLe/nl8ufdLcoty0Wk6bm9+O4+2fxQfFx9bhyeEsFOS5Ngp0x5Wp2WGlbCxw6mHeXXzqxxMPQhAh6AOvNT1JZr7NbdxZEIIeydJjp1q5GecYZUgSY6wkYLiAr7c+yXf/P0NRaoIb2dvnu38LMObDJe6GyFEtZAkx07JqsfClvZe3Mtrm1/juP44AAPCB/By9MsEuAXYODIhRF0iSY6dMg1XJWflk51fhIeL/FGLqldkKOKrvV/xxd4vMCgDfq5+vNz1ZQZFDLJ1aEKIOkg++eyUj5sT9dydSM8p5HRaDi2CvW0dkrBzZ7LO8MLGF9h1YRcANzW+iZe6vEQ913q2DUwIUWdJkmPHwv3cSc/Rk5AiSY6oWqtOruKNLW+QWZiJh5MHr0S/wi2Rt9g6LCFEHSdJjh0L93Nnb6KeU1KXI6pITmEOb8W9xa/HfwWgXWA73un1DmFeYTaOTAghJMmxaxGX9rCKT8m2cSTCHiVkJDBl3RSOpR9Dp+mY2HYiD1/3MI46+WdFCFEzyL9GdiwiQJIcUTX+Ov0XL258kczCTALcAni397t0Cu5k67CEEKIESXLsWMSlGVbxyTJcJazDoAx8secLPt/zOQDtA9vzXt/3CHIPsnFkQghRmiQ5dszUk3NGn0teYTGuTrI |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This would be much more effective if you made a plot that compared the solution profiles. You could make subplots for species A, B, and C. Then, on each subplot, you can compare the forward Euler, Crank-Nicolson, and a higher-order method (with scipy).
| "RHS_Cc = lambda Cb, t: k2 * Cb\n", | ||
| "\n", | ||
| "# Function to perform Crank-Nicolson method\n", | ||
| "def crank_nicolson(RHS_Ca, RHS_Cb, RHS_Cc, Ca0, Cb0, Cc0, dt, numsteps, LOUD=False):\n", |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
You should instead implement this as a generic function without the problem-specific information. You want to define your problem as returning a vector:
https://ndcbe.github.io/data-and-computing/notebooks/07/Trapezoid-Rule.html
https://ndcbe.github.io/data-and-computing/notebooks/07/Systems-of-Differential-Equations-and-Scipy.html#crank-nicolson
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This is a linear ODE. You should instead use our generic implementation of Crank-Nicolson from class:
https://ndcbe.github.io/data-and-computing/notebooks/07/Systems-of-Differential-Equations-and-Scipy.html#crank-nicolson
| "\n", | ||
| " # Crank-Nicolson Method\n", | ||
| "### BEGIN SOLUTION ###\n", | ||
| " Ca_half = Ca[n-1] + 0.5 * dt * RHS_Ca(Ca[n-1], Cb[n-1], t[n])\n", |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This calculation is incorrect. Crank-Nicolson is an implicit method, meaning you must solve a (non)linear system of equations each iteration.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
| "text/plain": [ | ||
| "<Figure size 600x600 with 1 Axes>" | ||
| ], | ||
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAItCAYAAADbrGvgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACtWUlEQVR4nOzdd3hURffA8e/d9E4qCSEhhNCLSA29CIgoTQELCliwoCj2roC+6vuKFSuigAL6E0WkqoAgJSR0kF4TSKhpm153fn8suxKTQMJussnmfJ5nn2zunb33bAjsYebMjKaUUgghhBBC2BmdrQMQQgghhKgKkuQIIYQQwi5JkiOEEEIIuyRJjhBCCCHskiQ5QgghhLBLkuQIIYQQwi5JkiOEEEIIuyRJjhBCCCHskiQ5QgghhLBLkuQIUQtMnToVTdNITk6ulvutX78eTdNYv359lVx/7ty5aJpGfHx8lVzfGrZu3YqzszMJCQm2DqXGqMyfW0REBBMmTKjymMoyYcIEIiIirum10dHRPPfcc9YNSNiMJDlC/Mvx48d56KGHiIyMxNXVFW9vb3r06MFHH31Ebm6urcO7Jn379kXTNIYOHVrqXHx8PJqmMWPGDBtEVnO9/PLL3HnnnTRq1Mj84X61x7V+sNZl//4Zent706dPH1asWGGTeJ5//nk+/fRTzp07Z5P7C+tytHUAQtQkK1asYPTo0bi4uDBu3DjatGlDQUEBmzZt4tlnn2X//v3MmjXL1mFes+XLl7Njxw46dux4xXa9e/cmNzcXZ2fnaoqsZtm9ezdr1qwhJiYGMP48vvvuuxJtHnjgAbp06cKDDz5oPubp6VmtcVa3e+65hzvuuAMXFxerXnfgwIGMGzcOpRQJCQl8/vnnDB06lFWrVnHjjTda9V5XM3z4cLy9vfnss8+YPn16td5bWJ8kOUJccvLkSe644w4aNWrEn3/+SUhIiPnco48+yrFjx674v0uDwUBBQQGurq7VEW6lhYeHk5mZybRp01i6dOkV2+p0uhr7PqrDnDlzCA8PJzo6GoDIyEgiIyNLtHn44YeJjIzk7rvvLvc6RUVFGAwGu0kWHRwccHBwsPp1mzVrVuLneNttt9GqVSs++uijak9ydDodo0aN4ttvv2XatGlomlat9xfWJcNVQlzyv//9j6ysLL7++usSCY5JVFQUTzzxhPl7TdN47LHHWLBgAa1bt8bFxYXffvsNgBkzZtC9e3f8/f1xc3OjY8eO/PTTT6WuabrGkiVLaNOmDS4uLrRu3dp8nStJSEggKiqKNm3acP78+au29/Ly4sknn2TZsmXs3Lnzim3Lq8mJi4tjyJAh+Pr64uHhQbt27fjoo49KtPnzzz/p1asXHh4e1KtXj+HDh3Pw4MGrxrd9+3ZuvPFGAgICcHNzo3Hjxtx3330l2mRnZ/P0008TFhaGi4sLzZs3Z8aMGSilSrSz5OcKsGTJEvr371+pD7jLh/0+/PBDmjRpgouLCwcOHKCgoIDXXnuNjh074uPjg4eHB7169WLdunXlXuODDz6gUaNGuLm50adPH/bt21fqnocOHWLUqFH4+fnh6upKp06dSiWwVxpeu7y2piJ/bmXV5CilePPNN2nYsCHu7u7069eP/fv3V/jnVpaWLVsSEBDA8ePHr3hvqHj9mMFg4MMPP6R169a4urpSv359HnroIdLS0kq1HThwIAkJCezevdui9yFsT3pyhLhk2bJlREZG0r179wq/5s8//+THH3/kscceIyAgwFyT8dFHHzFs2DDGjh1LQUEBP/zwA6NHj2b58uXcfPPNJa6xadMmFi9ezKRJk/Dy8uLjjz/mtttu49SpU/j7+5d53+PHj9O/f3/8/PxYvXo1AQEBFYr3iSee4IMPPmDq1KlX7c35t9WrV3PLLbcQEhLCE088QXBwMAcPHmT58uXm5G/NmjXcdNNNREZGMnXqVHJzc5k5cyY9evRg586d5dasXLhwgUGDBhEYGMgLL7xAvXr1iI+PZ/HixeY2SimGDRvGunXruP/++2nfvj2///47zz77LElJSXzwwQclrnktP1eApKQkTp06RYcOHSr18zGZM2cOeXl5PPjgg7i4uODn50dGRgazZ8/mzjvvZOLEiWRmZvL1119z4403snXrVtq3b1/iGt9++y2ZmZk8+uij5OXl8dFHH9G/f3/+/vtv6tevD8D+/fvp0aMHoaGhvPDCC3h4ePDjjz8yYsQIfv75Z0aOHAlQapgN4JVXXuHChQvm4bVr/XMDeO2113jzzTcZMmQIQ4YMYefOnQwaNIiCgoJr+vkB6PV60tLSaNKkyTVf498eeugh5s6dy7333svjjz/OyZMn+eSTT9i1axebN2/GycnJ3NY0nLt582auv/56q8UgbEAJIZRer1eAGj58eIVfAyidTqf2799f6lxOTk6J7wsKClSbNm1U//79S13D2dlZHTt2zHxsz549ClAzZ840H3v99dcVoC5evKgOHjyoGjRooDp37qxSU1MrFGufPn1U69atlVJKTZs2TQFqx44dSimlTp48qQD17rvvmtuvW7dOAWrdunVKKaWKiopU48aNVaNGjVRaWlqJaxsMBvPz9u3bq6CgIJWSklLi/eh0OjVu3DjzsTlz5ihAnTx5Uiml1C+//KIAtW3btnLfw5IlSxSg3nzzzRLHR40apTRNK/EzrOjPtSxr1qxRgFq2bNkV23l4eKjx48ebvzf9HL29vdWFCxdKtC0qKlL5+fkljqWlpan69eur++67r9Q13NzcVGJiovl4XFycAtSTTz5pPnbDDTeotm3bqry8PPMxg8Ggunfvrpo2bVpu3P/73/8UoL799lvzsWv9c7tw4YJydnZWN998c4nfg5deekkBJX4+5QHU/fffry5evKguXLigtm/frgYPHlzqd/Lf9zb59++qUkqNHz9eNWrUyPz9xo0bFaAWLFhQ4rW//fZbmceVUsrZ2Vk98sgjV41f1GwyXCUEkJGRARiHdCqjT58+tGrVqtRxNzc38/O0tDT0ej29evUqc5howIABJf7H2q5dO7y9vTlx4kSptvv27aNPnz5ERESwZs0afH19KxUvGHtzfH19mTZtWoVfs2vXLk6ePMmUKVOoV69eiXOmIZ2zZ8+ye/duJkyYgJ+fX4n3M3DgQFauXFnu9U3XXL58OYWFhWW2WblyJQ4ODjz++OMljj/99NMopVi1alWJ45X5uV4uJSUF4Jp+tmCsJwkMDCxxzMHBwVyXYzAYSE1NpaioiE6dOpX5OzFixAhCQ0PN33fp0oWuXbuaf4apqan8+eefjBkzhszMTJKTk0lOTiYlJYUbb7yRo0ePkpSUVOq669at48UXX2Ty5Mncc889gGV/bmvWrKGgoIDJkyeXGNqbMmVKBX5S//j6668JDAwkKCiITp06sXbtWp577jmeeuqpSl2nPIsWLcLHx4eBAweaf1bJycl07NgRT0/PUsOGYPzzr64lG0TVkSRHCMDb2xuAzMzMSr2ucePGZR5fvnw50dHRuLq64ufnR2BgIJ9//jl6vb5U2/Dw8FLHfH19y6wVGDp0KF5eXvz+++/mmE2ysrI4d+6c+XHx4sUyY/Px8WHKlCksXbqUXbt2VeRtmmsj2rRpU24b03oyzZs3L3WuZcuWJCcnk52dXeZr+/Tpw2233ca0adMICAhg+PDhzJkzh/z8/BLXb9CgQalEtGXLliXub1KZn2tZ1L/qfCqqvN+JefPm0a5dO1xdXfH39ycwMJAVK1aU+TvRtGnTUseaNWtmrkc5duwYSileffVVAgMDSzxef/11wDgEeLnExERuv/12evTowfvvv28+bsmfm+m1/443MDCwUkni8OHDWb16NStWrDCvCZWTk4NOZ52PqKNHj6LX6wkKCir188rKyir1swLjn78UHdd+UpMjBMYkp0GDBmUWd17J5T02Jhs3bmTYsGH07t2bzz77jJCQEJycnJgzZw4LFy4s1b682SplfcjedtttzJs3jwULFvDQQw+VODdjxowSvTONGjUqd9E2U23OtGnT+PDDD6/wDquHpmn89NNPxMbGsmzZMn7//Xfuu+8+3nvvPWJjY69panZlfq6XM9XrVDQZ+reyfifmz5/PhAkTGDFiBM8++yxBQUE4ODjw9ttvlyiurSiDwQDAM888U+7so6ioKPPzgoICRo0ahYuLCz/++COOjjXrn/6GDRsyYMAAAIYMGUJAQACPPfYY/fr149ZbbwUoN+EoLi6+6vUNBgNBQUEsWLCgzPP/7nkDSE9Pr3Ctm6i5atZvuhA2dMsttzBr1iy2bNlCt27drvk6P//8M66urvz+++8l1hOZM2eOxTG+++67ODo6motp77rrLvO5cePG0bNnT/P3ZX3Ymph6c6ZOncr48eOvel/TsM++ffvMH0b/1qhRIwAOHz5c6tyhQ4cICAjAw8PjiveJjo4mOjqa//znPyxcuJCxY8fyww8/8MADD9CoUSPWrFlDZmZmid6cQ4cOlbi/pVq0aAEYlxSwlp9++onIyEgWL15c4sPa1Ovyb0ePHi117MiRI+YCYNN0dicnp3L/PC73+OOPs3v3bjZs2GAuXDax5M/N9NqjR4+WmGJ/8eLFa04SwVgk/MEHH/DKK68wcuRINE0z9wylp6eXaFuRFambNGnCmjVr6NGjxxX/XpgkJSVRUFBg7iUUtZcMVwlxyXPPPYeHhwcPPPBAmVOyjx8/Xmq6dFkcHBzQNK3E/zDj4+NZsmSJxTFqmsasWbMYNWoU48ePLzFDKjIykgEDBpgfPXr0uOK1TPU1FVnwrEOHDjRu3JgPP/yw1IeMqWckJCSE9u3bM2/evBJt9u3bxx9//MGQIUPKvX5aWlqpHhbTjCPTkNWQIUMoLi7mk08+KdHugw8+QNM0brrppqu+j4oIDQ0lLCyM7du3W+V68E+v0uXvMS4uji1btpTZfsmSJSVqarZu3UpcXJz5PQYFBdG3b1++/PJLzp49W+r1lw9Vzpkzhy+//JJPP/2ULl26lGpryZ/bgAEDcHJyYubMmSXem6W9g46Ojjz99NMcPHiQX3/9Ffgn0d6wYYO5XXFxcYUW5xwzZgzFxcW88cYbpc4VFRWV+p3esWMHQKVmWoqaSXpyhLikSZMmLFy4kNtvv52WLVuWWPE4JiaGRYsWVWgvnptvvpn333+fwYMHc9ddd3HhwgU+/fRToqKi2Lt3r8Vx6nQ65s+fz4gRIxgzZgwrV66kf//+lb6Oj48PTzzxRIUKkHU6nXkV2vbt23PvvfcSEhLCoUOH2L9/P7///jtg7Gm66aab6NatG/fff795KrKPjw9Tp04t9/rz5s3js88+Y+TIkTRp0oTMzEy++uorvL29zR+yQ4cOpV+/frz88svEx8dz3XXX8ccff/Drr78yZcoUq043Hj58OL/88ovV6jJuueUWFi9ezMiRI7n55ps5efIkX3zxBa1atSIrK6tU+6ioKHr27MkjjzxCfn4+H374If7+/iX2VPr000/p2bMnbdu2ZeLEiURGRnL+/Hm2bNlCYmIie/bsITk5mUmTJtGqVStcXFyYP39+ifuMHDkSDw+Pa/5zCwwM5JlnnuHtt9/mlltuYciQIezatYtVq1ZZPNQzYcIEXnvtNf773/8yYsQIWrduTXR0NC+++CKpqan4+fnxww8/UFRUdNVr9enTh4ceeoi3336b3bt3M2jQIJycnDh69CiLFi3io48+YtSoUeb2q1evJjw8XKaP2wMbzeoSosY6cuSImjhxooqIiFDOzs7Ky8tL9ejRQ82cObPEdF1APfroo2Ve4+uvv1ZNmzZVLi4uqkWLFmrOnDnmaeCXK+8ajRo1KjH99vIp5CY5OTmqT58+ytPTU8XGxl7xPV0+hfxyaWlpysfH56pTyE02bdqkBg4cqLy8vJSHh4dq165dqSnZa9asUT169FBubm7K29tbDR06VB04cKBEm39PB965c6e68847VXh4uHJxcVFBQUHqlltuUdu3by/xuszMTPXkk0+qBg0aKCcnJ9W0aVP17rvvlpi+rFTFf67l2blzpwLUxo0by21T3hTyy3+OJgaDQb311luqUaNGysXFRV1//fVq+fLlpaY6X36N9957T4WFhSkXFxfVq1cvtWfPnlLXPX78uBo3bpwKDg5WTk5OKjQ0VN1yyy3qp59+KnG98h6XT8e+lj83pZQqLi5W06ZNUyEhIcrNzU317dtX7du3r8I/6yv9PZo6dWqJ38Pjx4+rAQMGKBcXF1W/fn310ksvqdWrV191CrnJrFmzVMeOHZWbm5vy8vJSbdu2Vc8995w6c+ZMifcTEhKiXnnllavGLmo+TalrnEIghBB27IYbbqBBgwZlLqZXVeLj42ncuDHvvvsuzzzzTLXdV/xjyZIl3HXXXRw/frzMlc9F7SI1OUIIUYa33nqL//u//6tQYauwH//973957LHHJMGxE1KTI4QQZejatatFWxOI2qm8YnBRO0lPjhBCCCHsktTkCCGEEMIuSU+OEEIIIeySJDlCCCGEsEtSeGwDBoOBM2fO4OXlJRvACSGEEJWglCIzM5MGDRpcdRNXSXJs4MyZM4SFhdk6DCGEEKLWOn36NA0bNrxiG0lybMC0ueDp06fx9va2cTRCCCFE7ZGRkUFYWFiJjXrLI0mODZiGqLy9vSXJEUIIIa5BRco9pPBYCCGEEHZJkhwhhBBC2CVJcoQQQghhlyTJEUIIIYRdkiRHCCGEEHZJkhwhhBBC2CVJcoQQQghhlyTJEUIIIYRdkiRHCCGEEHZJkhwhhBBC2CVJcoQQQghhlyTJEUIIIYRdqhVJzttvv83o0aOJjIxE0zQiIiKu2D4uLo4BAwbg5eWFt7c3gwcPZvfu3WW2PXPmDOPGjSMwMBA3Nzc6derEokWLymybn5/Pa6+9RuPGjXFxcaFJkya8+eabFBYWWvgOhRBCCGFttWIX8pdeegk/Pz86dOhAenr6FdvGxsbSt29fQkNDmT59OgCffPIJvXr1IiYmhrZt25rbpqam0rNnTy5cuMBTTz1Fw4YNWbhwIWPGjOGbb77h3nvvLXHt22+/nV9//ZX77ruPbt26sWXLFl599VWOHTvG3Llzrf22hRBCCGEJVQscP37c/Lx169aqUaNG5bbt3Lmz8vLyUomJieZjiYmJysvLSw0cOLBE22effVYBaunSpeZjRUVFqnPnzsrPz09lZmaaj69YsUIB6qmnnipxjaeeekoBavPmzRV+P3q9XgFKr9dX+DVCCCGEqNxnaK0YroqMjKxQu2PHjrFt2zZGjx5NaGio+XhoaCijR49mzZo1nDt3znx84cKFNGnShKFDh5qPOTg4MHnyZFJTU1m5cmWJtgBTpkwpcU/T9/Pnz6/s2xJCCCFEFaoVSU5Fbdu2DYBu3bqVOhcdHY1Sih07dgBw9uxZkpKSiI6OLrPt5dczPQ8NDSUsLKxE27CwMBo0aFCibXVTShF7IoUft58mr7DYZnEIIYSou5RSGJSBYkMxhYZCCooLyCvKI7co12Yx1YqanIo6c+YMQIleHBPTsaSkpEq3NbVv1apVmfcNDQ0lMTGx3Ljy8/PJz883f5+RkXHF93EtHpi3naz8IjqE1yMqyMvq1xdCiLpGKUWxKqbIUESRoYhCQ2GZX03PTY+yzpm+FhuKKVbGh0EZKDIUGRMDVUyxofif52V8f9X2l9qY7mFqrzAmHwZlMCYiGL+Wddz03HTu38cNyoBCmZ+brmU6XhZ/V3/W376+ev/wLrGrJCcnJwcAFxeXUudcXV1LtKlMW9Pzstqa2l/e9t/efvttpk2bVpG3cE00TaOhrxuHzmVyOjVXkhwhhN0pNBSSW5RLTmEOuUW5JR45hTnkF+cbew6K8ygoLjB/n1+cX+L55cfKa3N5YlLeB7eoOFv+DO0qyXF3dwco0WtikpeXV6JNZdqanpfV1tT+8rb/9uKLL/LUU0+Zv8/IyCg17GWpMD93Y5KTVn6yJYQQ1UUpRW5RLpkFmWQXZpNZmElWQRZZhVn/fL30PLMgk5yiHHKKcsgt/FcCU2RMaooMRbZ+SwDoNB1OOiccdY6lvpZ1rNQ5zREHnQM6TYeD5oCDzgEH7bLvNQd0Oh2OmqPx2GXnyzpW6hpltP/3w/Q+dJoODe2f55qGDuPXso6b2muaVur1V3yNptnsz8uukpwGDRoAJYeZTEzHTENRlWlral9WW1P7soa9TFxcXMrtBbKWcD9jknU6VZIcIYT1KKXILMxEn6cnPT+d9Px09AV69PmXvs9LNz83Hc8oyCC7MBuDMlg9HkfNETdHN9wc3XB3cjc/d3V0xdnBGRcHF1wcXMzPLz92pXPODs64OrjipHMyPhzKTlZMSYKoHewqyencuTMAW7Zs4YEHHihxLjY2Fk3T6NixIwAhISGEhoYSGxtb6jqmY506dSpx7QULFnD69OkSvTCnT5/mzJkzDBs2zOrvpzLCfN2M8aTarsBLCFE7FBuKSctPIyU3xfjISyE5N5mU3BSS8y59zU0mNS8Vfb6eYnXtExocNAc8nT3xdLr0cPbEy8kLD2cPPJ088XL2wsPJAw8nD9wd/0la3BzdcHO6lMxcOu7u6I6Tg5MVfxLC3tlVkhMVFWVesfiNN94w99acOXOGRYsW0b9/f4KDg83t77zzTmbMmMGyZcvM08iLi4uZOXMm9erVY8iQISXaLliwgA8//JD33nvPfPzDDz8EYOzYsdXwDssXZurJkeEqIeq0IkMRybnJnMs+x7mcc5zPPm98nn2O8znG5yl5KZXuZXFzdMPHxYd6LvX++ersY35ez7We+ZyXs5cxkXHywM3RzabDFaJuqxVJznfffUdCQgIAFy9epKCggDfffBOARo0acc8995jbfvTRR/Tr149evXoxefJkAGbOnInBYCiRnAC88MILLFq0iLvuuounnnqK0NBQvv/+e7Zt28bs2bPx8vqngPfmm2/mlltu4f3330ev15tXPP7666+5++676dmzZ1X/GK4oTIarhKgTlFIk5yZzOvN0iUdiViLnss+RnJtcoQRGQ8PX1Rc/Vz8C3ALwd/MnwPXSV7cA/F398XfzNycwLg5VO+QuRFXQlFI1vnS8b9++/PXXX2We69OnD+vXry9xbMuWLbzyyivExcWhaRrdu3fn7bffpkOHDqVen5SUxAsvvMCqVavIysqiVatWPP/889x+++2l2ubl5fHmm28yf/58zp49S2hoKPfeey8vvPACTk4V70LNyMjAx8cHvV6Pt7d3hV93JTkFRbR67XcA9rw+CB836dIVorZSSnE+5zwn9Cc4lXGqRDKTlJV01XVHHDVHgtyDCPYIpr57feNXj/oEuwcT7BFMoHsgfq5+OOpqxf9zhSihMp+htSLJsTdVkeQAdHpzNclZBSyf3JM2oT5Wu64QomoYlIGkrCROpJ/ghP4Ex9OPc0JvfJ5dmF3u63SajmD3YMK8wmjo1dD8tYFHA+p71Mff1R8HnUM1vhMhqk9lPkMljbcjDX3dSc4qIDEtR5IcIWqY3KJcjqUd41DaIQ6nHuZg6kGOph0tt1fGQXMgzCuMCO8IcyJjeoR6hkoBrhAVIEmOHQnzc2f36XSZYSWEjeUV5XEw9SB7L+7lQMoBDqce5mTGyTJrZZx0TjT2aUykTySR9SJp4tOESJ9IGnk3kkRGCAtJkmNHzNPIZYaVENVGKUViZiJ7kvew9+Je9l7cy+HUwxSp0ovX+bn60cKvBc39mtPCtwUt/FoQ7h0utTFCVBH5m2VHZIaVEFXPoAwcTTvKtnPb2HpuK7sv7CYtP61UO39Xf9oFtqNNQBta+BkTmkC3QJlOLUQ1kiTHjoT5mtbKkeEqIaxFKcXx9ONsPbeVbee2sf38dtLz00u0cdI50dK/Je0C2nFd4HW0C2xHiEeIJDRC2JgkOXYkzM84XJWYloNSSv6BFeIa6fP1bEraxIbEDcSejSU1L7XEeTdHNzrU70CX4C50rN+Rln4tcXZwtlG0QojySJJjRxrUc0OnQV6hgYtZ+QR5udo6JCFqBaUUR9KOsDFpIxsSN7Dn4p4SRcKuDq60D2pPl+AudA7uTOuA1jjppChYiJpOkhw74uSgI8THjaT0XE6n5kqSI8QVFBYXEncujj9P/cnGpI2cyz5X4nxT36b0Du1Nz9CetAtsJz01QtRCkuTYmYa+xiQnMS2Hjo18bR2OEDVKYXEhW85u4Y/4P1h3eh0ZBRnmc64OrnQJ6UKfhn3oFdqLEM8QG0YqhLAGSXLsTJifO3EnU2WGlRCXGJSBbee2sfzEctaeWktmQab5nL+rPzeE30CfsD50Ce6Cq6P0fgphTyTJsTPmGVayIKCo446nH2fZ8WWsOLmixFBUgFsAA8IHMChiEB2COsj2B0LYMUly7Ey4vywIKOqu7MJsVpxYweKji9mfst983MvJixsb38iQxkMksRGiDpEkx86YenJOyXCVqEMOphxk0ZFFrDixgpwi4+++o+ZIz9CeDG0ylD5hfXBxcLFxlEKI6iZJjp0J9zcmOWfScykoMuDsqLNxREJUjcLiQn6L/42FBxeyL2Wf+XiEdwSjmo1iaJOh+Ln62TBCIYStSZJjZwI9XXBzciC3sJgz6blEBHjYOiQhrCo9L50fj/zID4d+4GLuRQAcdY4MDB/I6Oaj6VS/kyyEKYQAJMmxO5qmEe7nzuHzmSSk5kiSI+xGvD6e7w58x9LjS8krzgMgyC2IO1veyciokfi7+ds4QiFETSNJjh0K9zcmOadSsoFAW4cjhEWOpR1j1t5Z/Bb/GwoFQEu/ltzT6h4GRwzGyUFWHhZClE2SHDsUfmk38oQUKT4Wtdeh1EPM2juL1Qmrzcf6NOzD+NbjZUhKCFEhkuTYoUb+MsNK1F5H0o4wc9dM1p9ebz42sNFAHmz3IC38WtgsLiFE7SNJjh0y9eRIkiNqk7NZZ/lk9ycsO74MhUKn6bgx4kYebPsgUb5Rtg5PCFELSZJjhxr5G4uNT6XmoJSSbn1Ro6XnpTP779l8f+h7CgwFAAxqNIjHrn+Mxj6NbRydEKI2kyTHDoXWc0OnQU5BMRez8mU3clEjFRoKWXhwIV/u+ZLMQuN+Up2DO/NkhydpG9jWxtEJIeyBJDl2yNlRR4iPcTfy06k5kuSIGif2bCxvx73NCf0JAJr5NuPJjk/So0EP6XkUQliNJDl2qpG/O0npuSSk5NCxkaz6KmqGs1lnmbF9Bn8k/AGAr4svT3R4ghFRI2Q/KSGE1UmSY6fC/dyJOZ4i08hFjVBkKGLe/nl8ufdLcoty0Wk6bm9+O4+2fxQfFx9bhyeEsFOS5Ngp0x5Wp2WGlbCxw6mHeXXzqxxMPQhAh6AOvNT1JZr7NbdxZEIIeydJjp1q5GecYZUgSY6wkYLiAr7c+yXf/P0NRaoIb2dvnu38LMObDJe6GyFEtZAkx07JqsfClvZe3Mtrm1/juP44AAPCB/By9MsEuAXYODIhRF0iSY6dMg1XJWflk51fhIeL/FGLqldkKOKrvV/xxd4vMCgDfq5+vNz1ZQZFDLJ1aEKIOkg++eyUj5sT9dydSM8p5HRaDi2CvW0dkrBzZ7LO8MLGF9h1YRcANzW+iZe6vEQ913q2DUwIUWdJkmPHwv3cSc/Rk5AiSY6oWqtOruKNLW+QWZiJh5MHr0S/wi2Rt9g6LCFEHSdJjh0L93Nnb6KeU1KXI6pITmEOb8W9xa/HfwWgXWA73un1DmFeYTaOTAghJMmxaxGX9rCKT8m2cSTCHiVkJDBl3RSOpR9Dp+mY2HYiD1/3MI46+WdFCFEzyL9GdiwiQJIcUTX+Ov0XL258kczCTALcAni397t0Cu5k67CEEKIESXLsWMSlGVbxyTJcJazDoAx8secLPt/zOQDtA9vzXt/3CHIPsnFkQghRmiQ5dszUk3NGn0teYTGuTrI |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Please use LaTeX for subscripts, e.g., k$_1$ and k$_2$. Please update this throughout the entire notebook
More specific descriptions can be found on Gradescope!! @adowling2
-- Minor editing:
-- Substantial intellectual contribution: