Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,12 @@

SAHI helps developers overcome real-world challenges in object detection by enabling **sliced inference** for detecting small objects in large images. It supports various popular detection models and provides easy-to-use APIs.

<div align="center">

🌐 [English](README.md) | 🇨🇳 [简体中文](docs/zh/README.md)

</div>

| Command | Description |
|---|---|
| [predict](https://github.com/obss/sahi/blob/main/docs/cli.md#predict-command-usage) | perform sliced/standard video/image prediction using any [ultralytics](https://github.com/ultralytics/ultralytics)/[mmdet](https://github.com/open-mmlab/mmdetection)/[huggingface](https://huggingface.co/models?pipeline_tag=object-detection&sort=downloads)/[torchvision](https://pytorch.org/vision/stable/models.html#object-detection) model - see [CLI guide](docs/cli.md#predict-command-usage) |
Expand Down
2 changes: 1 addition & 1 deletion docs/coco.md
Original file line number Diff line number Diff line change
Expand Up @@ -221,7 +221,7 @@ save_json(area_filtered_coco.json, "area_filtered_coco.json")

<details closed>
<summary>
<big><b>Filter out images that does not contain any annotation:</b></big>
<big><b>Filter out images that do not contain any annotation:</b></big>
</summary>

```python
Expand Down
2 changes: 1 addition & 1 deletion docs/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,7 @@ SAHI addresses this by applying a unique methodology that can be used with any o

## Interactive Examples

All documentation files are complemented by interactive Jupyter notebooks in the [demo directory](/notebooks/):
All documentation files are complemented by interactive Jupyter notebooks in the [demo directory](notebooks/):

<div class="grid cards" markdown>

Expand Down
236 changes: 236 additions & 0 deletions docs/zh/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,236 @@
<div align="center">
<h1>
SAHI: 切片辅助高效推理
</h1>

<h4>
一个轻量级的计算机视觉库,可实现大规模的目标检测和实例分割
</h4>

<h4>
<img width="700" alt="teaser" src="https://raw.githubusercontent.com/obss/sahi/main/resources/sliced_inference.gif">
</h4>

<div>
<a href="https://pepy.tech/project/sahi"><img src="https://pepy.tech/badge/sahi" alt="downloads"></a>
<a href="https://pepy.tech/project/sahi"><img src="https://pepy.tech/badge/sahi/month" alt="downloads"></a>
<a href="https://github.com/obss/sahi/blob/main/LICENSE.md"><img src="https://img.shields.io/pypi/l/sahi" alt="License"></a>
<a href="https://badge.fury.io/py/sahi"><img src="https://badge.fury.io/py/sahi.svg" alt="pypi version"></a>
<a href="https://anaconda.org/conda-forge/sahi"><img src="https://anaconda.org/conda-forge/sahi/badges/version.svg" alt="conda version"></a>
<a href="https://github.com/obss/sahi/actions/workflows/ci.yml"><img src="https://github.com/obss/sahi/actions/workflows/ci.yml/badge.svg" alt="Continuous Integration"></a>
<br>
<a href="https://context7.com/obss/sahi"><img src="https://img.shields.io/badge/Context7%20MCP-Indexed-blue" alt="Context7 MCP"></a>
<a href="https://context7.com/obss/sahi/llms.txt"><img src="https://img.shields.io/badge/llms.txt-✓-brightgreen" alt="llms.txt"></a>
<a href="https://ieeexplore.ieee.org/document/9897990"><img src="https://img.shields.io/badge/DOI-10.1109%2FICIP46576.2022.9897990-orange.svg" alt="ci"></a>
<a href="https://colab.research.google.com/github/obss/sahi/blob/main/demo/inference_for_ultralytics.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://huggingface.co/spaces/fcakyon/sahi-yolox"><img src="https://raw.githubusercontent.com/obss/sahi/main/resources/hf_spaces_badge.svg" alt="HuggingFace Spaces"></a>
<a href="https://deepwiki.com/obss/sahi"><img src="https://img.shields.io/badge/DeepWiki-obss%2Fsahi-blue.svg?logo=" alt="Sliced/tiled inference DeepWiki"></a>
<a href="https://squidfunk.github.io/mkdocs-material/"><img src="https://img.shields.io/badge/Material_for_MkDocs-526CFE?logo=MaterialForMkDocs&logoColor=white" alt="built-with-material-for-mkdocs"></a>

</div>
</div>

## <div align="center">概览</div>

SAHI 通过启用**切片推理**来检测大图像中的小物体,从而帮助开发人员克服了对象检测中的实际挑战。它支持各种流行的检测模型并提供易于使用的 API。

<div align="center">

🌐 [English](README.md) | 🇨🇳 [简体中文](docs/zh/README.md)

</div>

| 命令 | 描述 |
|---|---|
| [predict](https://github.com/obss/sahi/blob/main/docs/cli.md#predict-command-usage) | 使用任意 [ultralytics](https://github.com/ultralytics/ultralytics)/[mmdet](https://github.com/open-mmlab/mmdetection)/[huggingface](https://huggingface.co/models?pipeline_tag=object-detection&sort=downloads)/[torchvision](https://pytorch.org/vision/stable/models.html#object-detection) 模型进行切片或标准视频 / 图像预测 - 参见 [命令行指南](docs/cli.md#predict-command-usage) |
| [predict-fiftyone](https://github.com/obss/sahi/blob/main/docs/cli.md#predict-fiftyone-command-usage) | 使用任意支持的模型进行切片或标准预测,并在 [fiftyone应用](https://github.com/voxel51/fiftyone) 中探索结果 - [了解更多](docs/fiftyone.md) |
| [coco slice](https://github.com/obss/sahi/blob/main/docs/cli.md#coco-slice-command-usage) | 自动切片 COCO 标注和图像文件 - 参见 [切片工具](docs/slicing.md) |
| [coco fiftyone](https://github.com/obss/sahi/blob/main/docs/cli.md#coco-fiftyone-command-usage) | 在 [fiftyone ui](https://github.com/voxel51/fiftyone) 中探索 COCO 数据集的多个预测结果,按错误检测数量排序 |
| [coco evaluate](https://github.com/obss/sahi/blob/main/docs/cli.md#coco-evaluate-command-usage) | 针对给定的预测和真实数据评估 COCO 的类级别 AP 和 AR - 查看 [COCO 工具](docs/coco.md) |
| [coco analyse](https://github.com/obss/sahi/blob/main/docs/cli.md#coco-analyse-command-usage) | 计算并导出多种错误分析图表 - 参见 [complete guide](docs/README.md) |
| [coco yolo](https://github.com/obss/sahi/blob/main/docs/cli.md#coco-yolo-command-usage) | 将任意 COCO 数据集自动转换为 [ultralytics](https://github.com/ultralytics/ultralytics) 格式 |

### 社区认可

[📜 引用 SAHI 的出版物列表(当前超过 400 篇)](https://scholar.google.com/scholar?hl=en&as_sdt=2005&sciodt=0,5&cites=14065474760484865747&scipsc=&q=&scisbd=1)

[🏆 使用 SAHI 的竞赛获奖者列表](https://github.com/obss/sahi/discussions/688)

### AI 工具认可
SAHI 的文档已在 [Context7 MCP](https://context7.com/obss/sahi) 中建立索引,为 AI 编码助手提供最新的,版本特定的代码示例和 API 参考。我们还提供了一个遵循 AI 可读文档新兴标准的 [llms.txt](https://context7.com/obss/sahi/llms.txt) 文件。要将 SAHI 文档集成到您的 AI 开发工作流程中,请查看 [Context7 MCP 安装指南](https://github.com/upstash/context7#%EF%B8%8F-installation).

## <div align="center">安装</div>

### 基本安装
```bash
pip install sahi
```

<details closed>
<summary>
<big><b>详细安装说明(点击展开)</b></big>
</summary>

- 安装您所需的 PyTorch 和 torchvision 版本:

```console
pip install torch==2.7.0 torchvision==0.22.0 --index-url https://download.pytorch.org/whl/cu126
```
(为了获得mmdet框架的支持,您需要安装torch 2.1.2版本):

```console
pip install torch==2.1.2 torchvision==0.16.2 --index-url https://download.pytorch.org/whl/cu121
```

- 安装您所需的检测框架 (ultralytics):

```console
pip install ultralytics>=8.3.161
```

- 安装您所需的检测框架 (huggingface):

```console
pip install transformers>=4.49.0 timm
```

- 安装您所需的检测框架 (yolov5):

```console
pip install yolov5==7.0.14 sahi==0.11.21
```

- 安装您所需的检测框架 (mmdet):

```console
pip install mim
mim install mmdet==3.3.0
```

- 安装您所需的检测框架 (roboflow):

```console
pip install inference>=0.50.3 rfdetr>=1.1.0
```

</details>

## <div align="center">快速开始</div>

### 教程

- [SAHI 简介](https://medium.com/codable/sahi-a-vision-library-for-performing-sliced-inference-on-large-images-small-objects-c8b086af3b80) - 请查阅 [完整的文档](docs/README.md) 以了解高级用法。

- [官方论文](https://ieeexplore.ieee.org/document/9897990) (ICIP 2022 oral)

- [预训练权重 和 ICIP 2022 论文文件](https://github.com/fcakyon/small-object-detection-benchmark)

- [视频教程(2025年)](https://www.youtube.com/watch?v=ILqMBah5ZvI) (推荐)

- [使用 FiftyOne 可视化并评估 SAHI 的预测结果](https://voxel51.com/blog/how-to-detect-small-objects/)

- [《探索 SAHI》——来自 learnopencv.com 的研究文章](https://learnopencv.com/slicing-aided-hyper-inference/)

- [Encord 对 Slicing Aided Hyper Inference(SAHI)的解读](https://encord.com/blog/slicing-aided-hyper-inference-explained/)

- [视频教程:SAHI 在小目标检测中的应用](https://www.youtube.com/watch?v=UuOJKxn-M8&t=270s)

- [视频推理支持现已上线](https://github.com/obss/sahi/discussions/626)

- [Kaggle notebook](https://www.kaggle.com/remekkinas/sahi-slicing-aided-hyper-inference-yv5-and-yx)

- [卫星图像目标检测](https://blog.ml6.eu/how-to-detect-small-objects-in-very-large-images-70234bab0f98)

- [误差分析绘图 & 评估](https://github.com/obss/sahi/discussions/622) (推荐)

- [交互式结果可视化与检查](https://github.com/obss/sahi/discussions/624) (推荐)

- [COCO 数据集转换](https://medium.com/codable/convert-any-dataset-to-coco-object-detection-format-with-sahi-95349e1fe2b7)

- [切片操作 notebook 示例](demo/slicing.ipynb)

- `YOLOX` + `SAHI` 示例: <a href="https://huggingface.co/spaces/fcakyon/sahi-yolox"><img src="https://raw.githubusercontent.com/obss/sahi/main/resources/hf_spaces_badge.svg" alt="sahi-yolox"></a>

- `YOLO12` + `SAHI` 实战教程: <a href="https://colab.research.google.com/github/obss/sahi/blob/main/demo/inference_for_ultralytics.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="sahi-yolo12"></a>

- `YOLO11-OBB` + `SAHI` 实战教程: <a href="https://colab.research.google.com/github/obss/sahi/blob/main/demo/inference_for_ultralytics.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="sahi-yolo11-obb"></a> (NEW)

- `YOLO11` + `SAHI` 实战教程: <a href="https://colab.research.google.com/github/obss/sahi/blob/main/demo/inference_for_ultralytics.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="sahi-yolo11"></a>

- `Roboflow/RF-DETR` + `SAHI` 实战教程: <a href="https://colab.research.google.com/github/obss/sahi/blob/main/demo/inference_for_roboflow.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="roboflow"></a> (NEW)

- `RT-DETR v2` + `SAHI` 实战教程: <a href="https://colab.research.google.com/github/obss/sahi/blob/main/demo/inference_for_huggingface.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="sahi-rtdetrv2"></a> (NEW)

- `RT-DETR` + `SAHI` 实战教程: <a href="https://colab.research.google.com/github/obss/sahi/blob/main/demo/inference_for_rtdetr.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="sahi-rtdetr"></a>

- `HuggingFace` + `SAHI` 实战教程: <a href="https://colab.research.google.com/github/obss/sahi/blob/main/demo/inference_for_huggingface.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="sahi-huggingface"></a>

- `YOLOv5` + `SAHI` 实战教程: <a href="https://colab.research.google.com/github/obss/sahi/blob/main/demo/inference_for_yolov5.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="sahi-yolov5"></a>

- `MMDetection` + `SAHI` 实战教程: <a href="https://colab.research.google.com/github/obss/sahi/blob/main/demo/inference_for_mmdetection.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="sahi-mmdetection"></a>

- `TorchVision` + `SAHI` 实战教程: <a href="https://colab.research.google.com/github/obss/sahi/blob/main/demo/inference_for_torchvision.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="sahi-torchvision"></a>

<a href="https://huggingface.co/spaces/fcakyon/sahi-yolox"><img width="600" src="https://user-images.githubusercontent.com/34196005/144092739-c1d9bade-a128-4346-947f-424ce00e5c4f.gif" alt="sahi-yolox"></a>

### 与框架无关的切片/标准预测

<img width="700" alt="sahi-predict" src="https://user-images.githubusercontent.com/34196005/149310540-e32f504c-6c9e-4691-8afd-59f3a1a457f0.gif">

请在 [CLI 文档](docs/cli.md#predict-command-usage) 中查找关于使用 `sahi predict` 命令的详细信息,并查阅 [prediction API](docs/predict.md) 以了解高级用法。

请在 [视频推理教程](https://github.com/obss/sahi/discussions/626) 中查找关于视频推理的详细信息。

### 误差分析绘图 & 评估

<img width="700" alt="sahi-analyse" src="https://user-images.githubusercontent.com/34196005/149537858-22b2e274-04e8-4e10-8139-6bdcea32feab.gif">

请在 [误差分析绘图 & 评估](https://github.com/obss/sahi/discussions/622) 中查找相关的详细信息。

### 交互式结果可视化与检查

<img width="700" alt="sahi-fiftyone" src="https://user-images.githubusercontent.com/34196005/149321540-e6dd5f3-36dc-4267-8574-a985dd0c6578.gif">

探索 [FiftyOne 集成](docs/fiftyone.md) 以实现交互式可视化与检查。

### 其他实用工具

请查阅全面的 COCO 工具指南,了解 YOLO 格式转换、数据集切片、子采样、筛选、合并与分割等操作。

请查阅 [完整的 COCO 工具指南](docs/coco.md) 了解 YOLO 格式转换、数据集切片、子采样、筛选、合并与分割等操作。了解更多关于 [切片工具](docs/slicing.md) ,以实现对图像和数据集切片参数的精细控制。

## <div align="center">引用</div>
如果您在您的工作中使用了这个包,请如下文引用:

```bibtex
@article{akyon2022sahi,
title={Slicing Aided Hyper Inference and Fine-tuning for Small Object Detection},
author={Akyon, Fatih Cagatay and Altinuc, Sinan Onur and Temizel, Alptekin},
journal={2022 IEEE International Conference on Image Processing (ICIP)},
doi={10.1109/ICIP46576.2022.9897990},
pages={966-970},
year={2022}
}
```

```bibtex
@software{obss2021sahi,
author = {Akyon, Fatih Cagatay and Cengiz, Cemil and Altinuc, Sinan Onur and Cavusoglu, Devrim and Sahin, Kadir and Eryuksel, Ogulcan},
title = {{SAHI: A lightweight vision library for performing large scale object detection and instance segmentation}},
month = nov,
year = 2021,
publisher = {Zenodo},
doi = {10.5281/zenodo.5718950},
url = {https://doi.org/10.5281/zenodo.5718950}
}
```

## <div align="center">贡献者</div>

欢迎贡献!请参阅我们的 [贡献指南](CONTRIBUTING.md) 来开始使用. 感谢所有贡献者🙏!

<p align="center">
<a href="https://github.com/obss/sahi/graphs/contributors">
<img src="https://contrib.rocks/image?repo=obss/sahi" />
</a>
</p>
Loading