Skip to content

yangdsh/LPC

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 

Repository files navigation

LPC Setup

The below setup is tested on AWS EC2 image: Deep Learning Base OSS Nvidia Driver GPU AMI (Ubuntu 24.04)

conda env create -f vllm_cache_bench/environment.yml
conda activate vllm-cuda121

Install vllm

cd vllm
export VLLM_PRECOMPILED_WHEEL_LOCATION=https://files.pythonhosted.org/packages/8d/cf/9b775a1a1f5fe2f6c2d321396ad41b9849de2c76fa46d78e6294ea13be91/vllm-0.7.3-cp38-abi3-manylinux1_x86_64.whl
VLLM_USE_PRECOMPILED=1 pip install --editable .

Download dataset

cd ../vllm_cache_bench
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json

Run experiments

change HOME in constants_nips.py and configurations are on line 45, 265, 276

python run_nips.py

Plot results

the raw results files in the paper are already inlcuded in results/ and fig/

python plot_size.py
python plot_reqrate.py
python plot_throughput.py
python plot_ttft.py
python plot_true_line.py
python get_predictor_accuracy.py

Cite

https://neurips.cc/virtual/2025/poster/117662

About

Learned LLM Prefix Cache

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published